Optimal. Leaf size=23 \[ e^{\frac {625}{x^2}}-\frac {2 x}{3}+\frac {2 x}{1-2 x} \]
________________________________________________________________________________________
Rubi [A] time = 0.30, antiderivative size = 20, normalized size of antiderivative = 0.87, number of steps used = 8, number of rules used = 6, integrand size = 53, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.113, Rules used = {1594, 27, 12, 6688, 2209, 683} \begin {gather*} e^{\frac {625}{x^2}}-\frac {2 x}{3}+\frac {1}{1-2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 683
Rule 1594
Rule 2209
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 x^3+8 x^4-8 x^5+e^{\frac {625}{x^2}} \left (-3750+15000 x-15000 x^2\right )}{x^3 \left (3-12 x+12 x^2\right )} \, dx\\ &=\int \frac {4 x^3+8 x^4-8 x^5+e^{\frac {625}{x^2}} \left (-3750+15000 x-15000 x^2\right )}{3 x^3 (-1+2 x)^2} \, dx\\ &=\frac {1}{3} \int \frac {4 x^3+8 x^4-8 x^5+e^{\frac {625}{x^2}} \left (-3750+15000 x-15000 x^2\right )}{x^3 (-1+2 x)^2} \, dx\\ &=\frac {1}{3} \int \left (-\frac {3750 e^{\frac {625}{x^2}}}{x^3}+\frac {4+8 x-8 x^2}{(1-2 x)^2}\right ) \, dx\\ &=\frac {1}{3} \int \frac {4+8 x-8 x^2}{(1-2 x)^2} \, dx-1250 \int \frac {e^{\frac {625}{x^2}}}{x^3} \, dx\\ &=e^{\frac {625}{x^2}}+\frac {1}{3} \int \left (-2+\frac {6}{(-1+2 x)^2}\right ) \, dx\\ &=e^{\frac {625}{x^2}}+\frac {1}{1-2 x}-\frac {2 x}{3}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 20, normalized size = 0.87 \begin {gather*} e^{\frac {625}{x^2}}+\frac {1}{1-2 x}-\frac {2 x}{3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 32, normalized size = 1.39 \begin {gather*} -\frac {4 \, x^{2} - 3 \, {\left (2 \, x - 1\right )} e^{\left (\frac {625}{x^{2}}\right )} - 2 \, x + 3}{3 \, {\left (2 \, x - 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 19, normalized size = 0.83 \begin {gather*} -\frac {2}{3} \, x - \frac {1}{2 \, x - 1} + e^{\left (\frac {625}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.54, size = 18, normalized size = 0.78
method | result | size |
risch | \(-\frac {2 x}{3}-\frac {1}{2 \left (x -\frac {1}{2}\right )}+{\mathrm e}^{\frac {625}{x^{2}}}\) | \(18\) |
norman | \(\frac {-\frac {4 x^{3}}{3}-\frac {4 x^{4}}{3}-{\mathrm e}^{\frac {625}{x^{2}}} x^{2}+2 \,{\mathrm e}^{\frac {625}{x^{2}}} x^{3}}{x^{2} \left (2 x -1\right )}\) | \(45\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.57, size = 19, normalized size = 0.83 \begin {gather*} -\frac {2}{3} \, x - \frac {1}{2 \, x - 1} + e^{\left (\frac {625}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.56, size = 19, normalized size = 0.83 \begin {gather*} {\mathrm {e}}^{\frac {625}{x^2}}-\frac {2\,x}{3}-\frac {1}{2\,x-1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 17, normalized size = 0.74 \begin {gather*} - \frac {2 x}{3} + e^{\frac {625}{x^{2}}} - \frac {1}{2 x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________