Optimal. Leaf size=25 \[ \frac {-1+e^{2+e-(e-x) \left (1-x^2\right )}}{x} \]
________________________________________________________________________________________
Rubi [B] time = 1.22, antiderivative size = 51, normalized size of antiderivative = 2.04, number of steps used = 3, number of rules used = 2, integrand size = 49, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.041, Rules used = {6742, 2288} \begin {gather*} \frac {e^{-x^3+e x^2+x+2} \left (-3 x^3+2 e x^2+x\right )}{x^2 \left (-3 x^2+2 e x+1\right )}-\frac {1}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1}{x^2}+\frac {e^{2+x+e x^2-x^3} \left (-1+x+2 e x^2-3 x^3\right )}{x^2}\right ) \, dx\\ &=-\frac {1}{x}+\int \frac {e^{2+x+e x^2-x^3} \left (-1+x+2 e x^2-3 x^3\right )}{x^2} \, dx\\ &=-\frac {1}{x}+\frac {e^{2+x+e x^2-x^3} \left (x+2 e x^2-3 x^3\right )}{x^2 \left (1+2 e x-3 x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.46, size = 21, normalized size = 0.84 \begin {gather*} \frac {-1+e^{2+x+e x^2-x^3}}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 21, normalized size = 0.84 \begin {gather*} \frac {e^{\left (-x^{3} + x^{2} e + x + 2\right )} - 1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 21, normalized size = 0.84 \begin {gather*} \frac {e^{\left (-x^{3} + x^{2} e + x + 2\right )} - 1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 26, normalized size = 1.04
method | result | size |
risch | \(-\frac {1}{x}+\frac {{\mathrm e}^{x^{2} {\mathrm e}-x^{3}+x +2}}{x}\) | \(26\) |
norman | \(\frac {\left (1-{\mathrm e}^{-x^{2} {\mathrm e}+x^{3}-x -2}\right ) {\mathrm e}^{x^{2} {\mathrm e}-x^{3}+x +2}}{x}\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 25, normalized size = 1.00 \begin {gather*} \frac {e^{\left (-x^{3} + x^{2} e + x + 2\right )}}{x} - \frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.21, size = 27, normalized size = 1.08 \begin {gather*} \frac {{\mathrm {e}}^{x^2\,\mathrm {e}}\,{\mathrm {e}}^2\,{\mathrm {e}}^{-x^3}\,{\mathrm {e}}^x}{x}-\frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 19, normalized size = 0.76 \begin {gather*} \frac {e^{- x^{3} + e x^{2} + x + 2}}{x} - \frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________