Optimal. Leaf size=30 \[ \frac {\left (-1+e^5-x\right )^4 \left (-1-x+\left (-1+5 x^2 \log (x)\right )^2\right )}{x} \]
________________________________________________________________________________________
Rubi [B] time = 0.48, antiderivative size = 470, normalized size of antiderivative = 15.67, number of steps used = 25, number of rules used = 5, integrand size = 282, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.018, Rules used = {2356, 2295, 2304, 6, 2305} \begin {gather*} 25 x^7 \log ^2(x)+100 \left (1-e^5\right ) x^6 \log ^2(x)-2 \left (5-12 e^5+6 e^{10}\right ) x^5+12 \left (1-e^5\right )^2 x^5-2 x^5+150 \left (1-e^5\right )^2 x^5 \log ^2(x)+10 \left (5-12 e^5+6 e^{10}\right ) x^5 \log (x)-60 \left (1-e^5\right )^2 x^5 \log (x)-\frac {5}{2} \left (1-11 e^5+15 e^{10}-5 e^{15}\right ) x^4+\frac {25}{2} \left (1-e^5\right )^3 x^4+10 e^5 x^4-11 x^4+100 \left (1-e^5\right )^3 x^4 \log ^2(x)+10 \left (1-11 e^5+15 e^{10}-5 e^{15}\right ) x^4 \log (x)-50 \left (1-e^5\right )^3 x^4 \log (x)+\frac {10}{9} \left (1-e^5\right )^2 \left (13+10 e^5-5 e^{10}\right ) x^3+\frac {50}{9} \left (1-e^5\right )^4 x^3-20 e^{10} x^3+44 e^5 x^3-24 x^3+25 \left (1-e^5\right )^4 x^3 \log ^2(x)-\frac {10}{3} \left (1-e^5\right )^2 \left (13+10 e^5-5 e^{10}\right ) x^3 \log (x)-\frac {50}{3} \left (1-e^5\right )^4 x^3 \log (x)+20 \left (1-e^5\right )^3 x^2-66 e^{10} x^2+72 e^5 x^2-26 x^2-40 \left (1-e^5\right )^3 x^2 \log (x)-2 \left (7+5 e^{20}\right ) x+10 \left (1-e^5\right )^4 x-72 e^{10} x+52 e^5 x+\frac {1}{5} e^{15} (10 x+11)^2-10 \left (1-e^5\right )^4 x \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 2295
Rule 2304
Rule 2305
Rule 2356
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-2 \left (7+5 e^{20}\right ) x-26 x^2-24 x^3-11 x^4-2 x^5+\frac {1}{5} e^{15} (11+10 x)^2+e^5 \int \left (52+144 x+132 x^2+40 x^3\right ) \, dx+e^{10} \int \left (-72-132 x-60 x^2\right ) \, dx+\int \left (-10-80 x-130 x^2+40 x^3+250 x^4+200 x^5+50 x^6+e^{20} \left (-10+50 x^2\right )+e^{15} \left (40+80 x-200 x^2-200 x^3\right )+e^{10} \left (-60-240 x+120 x^2+600 x^3+300 x^4\right )+e^5 \left (40+240 x+160 x^2-440 x^3-600 x^4-200 x^5\right )\right ) \log (x) \, dx+\int \left (75 x^2+75 e^{20} x^2+400 x^3+750 x^4+600 x^5+175 x^6+e^{15} \left (-300 x^2-400 x^3\right )+e^{10} \left (450 x^2+1200 x^3+750 x^4\right )+e^5 \left (-300 x^2-1200 x^3-1500 x^4-600 x^5\right )\right ) \log ^2(x) \, dx\\ &=52 e^5 x-72 e^{10} x-2 \left (7+5 e^{20}\right ) x-26 x^2+72 e^5 x^2-66 e^{10} x^2-24 x^3+44 e^5 x^3-20 e^{10} x^3-11 x^4+10 e^5 x^4-2 x^5+\frac {1}{5} e^{15} (11+10 x)^2+\int \left (\left (75+75 e^{20}\right ) x^2+400 x^3+750 x^4+600 x^5+175 x^6+e^{15} \left (-300 x^2-400 x^3\right )+e^{10} \left (450 x^2+1200 x^3+750 x^4\right )+e^5 \left (-300 x^2-1200 x^3-1500 x^4-600 x^5\right )\right ) \log ^2(x) \, dx+\int \left (-10 \left (-1+e^5\right )^4 \log (x)+80 \left (-1+e^5\right )^3 x \log (x)+10 \left (-1+e^5\right )^2 \left (-13-10 e^5+5 e^{10}\right ) x^2 \log (x)-40 \left (-1+11 e^5-15 e^{10}+5 e^{15}\right ) x^3 \log (x)+50 \left (5-12 e^5+6 e^{10}\right ) x^4 \log (x)-200 \left (-1+e^5\right ) x^5 \log (x)+50 x^6 \log (x)\right ) \, dx\\ &=52 e^5 x-72 e^{10} x-2 \left (7+5 e^{20}\right ) x-26 x^2+72 e^5 x^2-66 e^{10} x^2-24 x^3+44 e^5 x^3-20 e^{10} x^3-11 x^4+10 e^5 x^4-2 x^5+\frac {1}{5} e^{15} (11+10 x)^2+50 \int x^6 \log (x) \, dx+\left (200 \left (1-e^5\right )\right ) \int x^5 \log (x) \, dx-\left (80 \left (1-e^5\right )^3\right ) \int x \log (x) \, dx-\left (10 \left (1-e^5\right )^4\right ) \int \log (x) \, dx-\left (10 \left (1-e^5\right )^2 \left (13+10 e^5-5 e^{10}\right )\right ) \int x^2 \log (x) \, dx+\left (50 \left (5-12 e^5+6 e^{10}\right )\right ) \int x^4 \log (x) \, dx+\left (40 \left (1-11 e^5+15 e^{10}-5 e^{15}\right )\right ) \int x^3 \log (x) \, dx+\int \left (75 \left (-1+e^5\right )^4 x^2 \log ^2(x)-400 \left (-1+e^5\right )^3 x^3 \log ^2(x)+750 \left (-1+e^5\right )^2 x^4 \log ^2(x)-600 \left (-1+e^5\right ) x^5 \log ^2(x)+175 x^6 \log ^2(x)\right ) \, dx\\ &=52 e^5 x-72 e^{10} x+10 \left (1-e^5\right )^4 x-2 \left (7+5 e^{20}\right ) x-26 x^2+72 e^5 x^2-66 e^{10} x^2+20 \left (1-e^5\right )^3 x^2-24 x^3+44 e^5 x^3-20 e^{10} x^3+\frac {10}{9} \left (1-e^5\right )^2 \left (13+10 e^5-5 e^{10}\right ) x^3-11 x^4+10 e^5 x^4-\frac {5}{2} \left (1-11 e^5+15 e^{10}-5 e^{15}\right ) x^4-2 x^5-2 \left (5-12 e^5+6 e^{10}\right ) x^5-\frac {50}{9} \left (1-e^5\right ) x^6-\frac {50 x^7}{49}+\frac {1}{5} e^{15} (11+10 x)^2-10 \left (1-e^5\right )^4 x \log (x)-40 \left (1-e^5\right )^3 x^2 \log (x)-\frac {10}{3} \left (1-e^5\right )^2 \left (13+10 e^5-5 e^{10}\right ) x^3 \log (x)+10 \left (1-11 e^5+15 e^{10}-5 e^{15}\right ) x^4 \log (x)+10 \left (5-12 e^5+6 e^{10}\right ) x^5 \log (x)+\frac {100}{3} \left (1-e^5\right ) x^6 \log (x)+\frac {50}{7} x^7 \log (x)+175 \int x^6 \log ^2(x) \, dx+\left (600 \left (1-e^5\right )\right ) \int x^5 \log ^2(x) \, dx+\left (750 \left (1-e^5\right )^2\right ) \int x^4 \log ^2(x) \, dx+\left (400 \left (1-e^5\right )^3\right ) \int x^3 \log ^2(x) \, dx+\left (75 \left (1-e^5\right )^4\right ) \int x^2 \log ^2(x) \, dx\\ &=52 e^5 x-72 e^{10} x+10 \left (1-e^5\right )^4 x-2 \left (7+5 e^{20}\right ) x-26 x^2+72 e^5 x^2-66 e^{10} x^2+20 \left (1-e^5\right )^3 x^2-24 x^3+44 e^5 x^3-20 e^{10} x^3+\frac {10}{9} \left (1-e^5\right )^2 \left (13+10 e^5-5 e^{10}\right ) x^3-11 x^4+10 e^5 x^4-\frac {5}{2} \left (1-11 e^5+15 e^{10}-5 e^{15}\right ) x^4-2 x^5-2 \left (5-12 e^5+6 e^{10}\right ) x^5-\frac {50}{9} \left (1-e^5\right ) x^6-\frac {50 x^7}{49}+\frac {1}{5} e^{15} (11+10 x)^2-10 \left (1-e^5\right )^4 x \log (x)-40 \left (1-e^5\right )^3 x^2 \log (x)-\frac {10}{3} \left (1-e^5\right )^2 \left (13+10 e^5-5 e^{10}\right ) x^3 \log (x)+10 \left (1-11 e^5+15 e^{10}-5 e^{15}\right ) x^4 \log (x)+10 \left (5-12 e^5+6 e^{10}\right ) x^5 \log (x)+\frac {100}{3} \left (1-e^5\right ) x^6 \log (x)+\frac {50}{7} x^7 \log (x)+25 \left (1-e^5\right )^4 x^3 \log ^2(x)+100 \left (1-e^5\right )^3 x^4 \log ^2(x)+150 \left (1-e^5\right )^2 x^5 \log ^2(x)+100 \left (1-e^5\right ) x^6 \log ^2(x)+25 x^7 \log ^2(x)-50 \int x^6 \log (x) \, dx-\left (200 \left (1-e^5\right )\right ) \int x^5 \log (x) \, dx-\left (300 \left (1-e^5\right )^2\right ) \int x^4 \log (x) \, dx-\left (200 \left (1-e^5\right )^3\right ) \int x^3 \log (x) \, dx-\left (50 \left (1-e^5\right )^4\right ) \int x^2 \log (x) \, dx\\ &=52 e^5 x-72 e^{10} x+10 \left (1-e^5\right )^4 x-2 \left (7+5 e^{20}\right ) x-26 x^2+72 e^5 x^2-66 e^{10} x^2+20 \left (1-e^5\right )^3 x^2-24 x^3+44 e^5 x^3-20 e^{10} x^3+\frac {50}{9} \left (1-e^5\right )^4 x^3+\frac {10}{9} \left (1-e^5\right )^2 \left (13+10 e^5-5 e^{10}\right ) x^3-11 x^4+10 e^5 x^4+\frac {25}{2} \left (1-e^5\right )^3 x^4-\frac {5}{2} \left (1-11 e^5+15 e^{10}-5 e^{15}\right ) x^4-2 x^5+12 \left (1-e^5\right )^2 x^5-2 \left (5-12 e^5+6 e^{10}\right ) x^5+\frac {1}{5} e^{15} (11+10 x)^2-10 \left (1-e^5\right )^4 x \log (x)-40 \left (1-e^5\right )^3 x^2 \log (x)-\frac {50}{3} \left (1-e^5\right )^4 x^3 \log (x)-\frac {10}{3} \left (1-e^5\right )^2 \left (13+10 e^5-5 e^{10}\right ) x^3 \log (x)-50 \left (1-e^5\right )^3 x^4 \log (x)+10 \left (1-11 e^5+15 e^{10}-5 e^{15}\right ) x^4 \log (x)-60 \left (1-e^5\right )^2 x^5 \log (x)+10 \left (5-12 e^5+6 e^{10}\right ) x^5 \log (x)+25 \left (1-e^5\right )^4 x^3 \log ^2(x)+100 \left (1-e^5\right )^3 x^4 \log ^2(x)+150 \left (1-e^5\right )^2 x^5 \log ^2(x)+100 \left (1-e^5\right ) x^6 \log ^2(x)+25 x^7 \log ^2(x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.39, size = 351, normalized size = 11.70 \begin {gather*} -4 x+12 e^5 x-12 e^{10} x+4 e^{15} x-6 x^2+12 e^5 x^2-6 e^{10} x^2-4 x^3+4 e^5 x^3-x^4-10 x \log (x)+40 e^5 x \log (x)-60 e^{10} x \log (x)+40 e^{15} x \log (x)-10 e^{20} x \log (x)-40 x^2 \log (x)+120 e^5 x^2 \log (x)-120 e^{10} x^2 \log (x)+40 e^{15} x^2 \log (x)-60 x^3 \log (x)+120 e^5 x^3 \log (x)-60 e^{10} x^3 \log (x)-40 x^4 \log (x)+40 e^5 x^4 \log (x)-10 x^5 \log (x)+25 x^3 \log ^2(x)-100 e^5 x^3 \log ^2(x)+150 e^{10} x^3 \log ^2(x)-100 e^{15} x^3 \log ^2(x)+25 e^{20} x^3 \log ^2(x)+100 x^4 \log ^2(x)-300 e^5 x^4 \log ^2(x)+300 e^{10} x^4 \log ^2(x)-100 e^{15} x^4 \log ^2(x)+150 x^5 \log ^2(x)-300 e^5 x^5 \log ^2(x)+150 e^{10} x^5 \log ^2(x)+100 x^6 \log ^2(x)-100 e^5 x^6 \log ^2(x)+25 x^7 \log ^2(x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.56, size = 203, normalized size = 6.77 \begin {gather*} -x^{4} - 4 \, x^{3} + 25 \, {\left (x^{7} + 4 \, x^{6} + 6 \, x^{5} + 4 \, x^{4} + x^{3} e^{20} + x^{3} - 4 \, {\left (x^{4} + x^{3}\right )} e^{15} + 6 \, {\left (x^{5} + 2 \, x^{4} + x^{3}\right )} e^{10} - 4 \, {\left (x^{6} + 3 \, x^{5} + 3 \, x^{4} + x^{3}\right )} e^{5}\right )} \log \relax (x)^{2} - 6 \, x^{2} + 4 \, x e^{15} - 6 \, {\left (x^{2} + 2 \, x\right )} e^{10} + 4 \, {\left (x^{3} + 3 \, x^{2} + 3 \, x\right )} e^{5} - 10 \, {\left (x^{5} + 4 \, x^{4} + 6 \, x^{3} + 4 \, x^{2} + x e^{20} - 4 \, {\left (x^{2} + x\right )} e^{15} + 6 \, {\left (x^{3} + 2 \, x^{2} + x\right )} e^{10} - 4 \, {\left (x^{4} + 3 \, x^{3} + 3 \, x^{2} + x\right )} e^{5} + x\right )} \log \relax (x) - 4 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.17, size = 400, normalized size = 13.33 \begin {gather*} 25 \, x^{7} \log \relax (x)^{2} - 100 \, x^{6} e^{5} \log \relax (x)^{2} + 100 \, x^{6} \log \relax (x)^{2} + 150 \, x^{5} e^{10} \log \relax (x)^{2} - 300 \, x^{5} e^{5} \log \relax (x)^{2} + 150 \, x^{5} \log \relax (x)^{2} - 100 \, x^{4} e^{15} \log \relax (x)^{2} + 300 \, x^{4} e^{10} \log \relax (x)^{2} - 300 \, x^{4} e^{5} \log \relax (x)^{2} - 10 \, x^{5} \log \relax (x) + 40 \, x^{4} e^{5} \log \relax (x) + 100 \, x^{4} \log \relax (x)^{2} + 25 \, x^{3} e^{20} \log \relax (x)^{2} - 100 \, x^{3} e^{15} \log \relax (x)^{2} + 150 \, x^{3} e^{10} \log \relax (x)^{2} - 100 \, x^{3} e^{5} \log \relax (x)^{2} - 10 \, x^{4} e^{5} - 40 \, x^{4} \log \relax (x) - 60 \, x^{3} e^{10} \log \relax (x) + 120 \, x^{3} e^{5} \log \relax (x) + 25 \, x^{3} \log \relax (x)^{2} - x^{4} + 20 \, x^{3} e^{10} - 40 \, x^{3} e^{5} - 60 \, x^{3} \log \relax (x) + 40 \, x^{2} e^{15} \log \relax (x) - 120 \, x^{2} e^{10} \log \relax (x) + 120 \, x^{2} e^{5} \log \relax (x) - 4 \, x^{3} - 20 \, x^{2} e^{15} + 60 \, x^{2} e^{10} - 60 \, x^{2} e^{5} - 40 \, x^{2} \log \relax (x) - 10 \, x e^{20} \log \relax (x) + 40 \, x e^{15} \log \relax (x) - 60 \, x e^{10} \log \relax (x) + 40 \, x e^{5} \log \relax (x) - 6 \, x^{2} + 4 \, {\left (5 \, x^{2} + 11 \, x\right )} e^{15} - 40 \, x e^{15} - 2 \, {\left (10 \, x^{3} + 33 \, x^{2} + 36 \, x\right )} e^{10} + 60 \, x e^{10} + 2 \, {\left (5 \, x^{4} + 22 \, x^{3} + 36 \, x^{2} + 26 \, x\right )} e^{5} - 40 \, x e^{5} - 10 \, x \log \relax (x) - 4 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.11, size = 243, normalized size = 8.10
method | result | size |
norman | \(\left (4 \,{\mathrm e}^{5}-4\right ) x^{3}+\left (-6 \,{\mathrm e}^{10}+12 \,{\mathrm e}^{5}-6\right ) x^{2}+\left (4 \,{\mathrm e}^{15}-12 \,{\mathrm e}^{10}+12 \,{\mathrm e}^{5}-4\right ) x +\left (-100 \,{\mathrm e}^{5}+100\right ) x^{6} \ln \relax (x )^{2}+\left (40 \,{\mathrm e}^{5}-40\right ) x^{4} \ln \relax (x )+\left (-60 \,{\mathrm e}^{10}+120 \,{\mathrm e}^{5}-60\right ) x^{3} \ln \relax (x )+\left (150 \,{\mathrm e}^{10}-300 \,{\mathrm e}^{5}+150\right ) x^{5} \ln \relax (x )^{2}+\left (-100 \,{\mathrm e}^{15}+300 \,{\mathrm e}^{10}-300 \,{\mathrm e}^{5}+100\right ) x^{4} \ln \relax (x )^{2}+\left (40 \,{\mathrm e}^{15}-120 \,{\mathrm e}^{10}+120 \,{\mathrm e}^{5}-40\right ) x^{2} \ln \relax (x )+\left (40 \,{\mathrm e}^{15}-60 \,{\mathrm e}^{10}+40 \,{\mathrm e}^{5}-10-10 \,{\mathrm e}^{20}\right ) x \ln \relax (x )+\left (25 \,{\mathrm e}^{20}-100 \,{\mathrm e}^{15}+150 \,{\mathrm e}^{10}-100 \,{\mathrm e}^{5}+25\right ) x^{3} \ln \relax (x )^{2}-x^{4}-10 x^{5} \ln \relax (x )+25 x^{7} \ln \relax (x )^{2}\) | \(243\) |
risch | \(-4 x -120 x^{2} {\mathrm e}^{10} \ln \relax (x )-40 x^{2} \ln \relax (x )-12 x \,{\mathrm e}^{10}+25 x^{7} \ln \relax (x )^{2}+40 x \,{\mathrm e}^{5} \ln \relax (x )+120 x^{3} {\mathrm e}^{5} \ln \relax (x )+4 x \,{\mathrm e}^{15}+40 \ln \relax (x ) {\mathrm e}^{15} x +12 x \,{\mathrm e}^{5}-x^{4}-4 x^{3}-6 x^{2}-60 x^{3} \ln \relax (x )+120 x^{2} {\mathrm e}^{5} \ln \relax (x )+100 x^{6} \ln \relax (x )^{2}-10 x^{5} \ln \relax (x )+100 x^{4} \ln \relax (x )^{2}+12 x^{2} {\mathrm e}^{5}-40 x^{4} \ln \relax (x )-10 x \ln \relax (x )+4 x^{3} {\mathrm e}^{5}-6 \,{\mathrm e}^{10} x^{2}+150 x^{5} \ln \relax (x )^{2}+25 x^{3} \ln \relax (x )^{2}+25 \,{\mathrm e}^{20} x^{3} \ln \relax (x )^{2}-10 \,{\mathrm e}^{20} \ln \relax (x ) x +40 \ln \relax (x ) x^{2} {\mathrm e}^{15}-100 \,{\mathrm e}^{5} \ln \relax (x )^{2} x^{3}-100 \,{\mathrm e}^{15} x^{4} \ln \relax (x )^{2}+150 \,{\mathrm e}^{10} x^{5} \ln \relax (x )^{2}-100 x^{3} \ln \relax (x )^{2} {\mathrm e}^{15}+300 x^{4} \ln \relax (x )^{2} {\mathrm e}^{10}+150 x^{3} \ln \relax (x )^{2} {\mathrm e}^{10}-60 \,{\mathrm e}^{10} \ln \relax (x ) x -300 x^{5} \ln \relax (x )^{2} {\mathrm e}^{5}-100 \,{\mathrm e}^{5} x^{6} \ln \relax (x )^{2}-300 x^{4} \ln \relax (x )^{2} {\mathrm e}^{5}+40 \,{\mathrm e}^{5} x^{4} \ln \relax (x )-60 x^{3} {\mathrm e}^{10} \ln \relax (x )\) | \(326\) |
default | \(-4 x -120 x^{2} {\mathrm e}^{10} \ln \relax (x )-40 x^{2} \ln \relax (x )+60 x \,{\mathrm e}^{10}+25 x^{7} \ln \relax (x )^{2}+40 x \,{\mathrm e}^{5} \ln \relax (x )+120 x^{3} {\mathrm e}^{5} \ln \relax (x )-40 x \,{\mathrm e}^{15}+40 \ln \relax (x ) {\mathrm e}^{15} x -40 x \,{\mathrm e}^{5}-x^{4}-4 x^{3}-6 x^{2}-60 x^{3} \ln \relax (x )+120 x^{2} {\mathrm e}^{5} \ln \relax (x )+100 x^{6} \ln \relax (x )^{2}-10 x^{5} \ln \relax (x )+100 x^{4} \ln \relax (x )^{2}-60 x^{2} {\mathrm e}^{5}-40 x^{4} \ln \relax (x )-10 x^{4} {\mathrm e}^{5}-10 x \ln \relax (x )-40 x^{3} {\mathrm e}^{5}+60 \,{\mathrm e}^{10} x^{2}-20 x^{2} {\mathrm e}^{15}+20 x^{3} {\mathrm e}^{10}+150 x^{5} \ln \relax (x )^{2}+25 x^{3} \ln \relax (x )^{2}+25 \,{\mathrm e}^{20} x^{3} \ln \relax (x )^{2}-10 \,{\mathrm e}^{20} \ln \relax (x ) x +40 \ln \relax (x ) x^{2} {\mathrm e}^{15}-100 \,{\mathrm e}^{5} \ln \relax (x )^{2} x^{3}-100 \,{\mathrm e}^{15} x^{4} \ln \relax (x )^{2}+150 \,{\mathrm e}^{10} x^{5} \ln \relax (x )^{2}-100 x^{3} \ln \relax (x )^{2} {\mathrm e}^{15}+300 x^{4} \ln \relax (x )^{2} {\mathrm e}^{10}+150 x^{3} \ln \relax (x )^{2} {\mathrm e}^{10}-60 \,{\mathrm e}^{10} \ln \relax (x ) x +{\mathrm e}^{5} \left (10 x^{4}+44 x^{3}+72 x^{2}+52 x \right )-300 x^{5} \ln \relax (x )^{2} {\mathrm e}^{5}-100 \,{\mathrm e}^{5} x^{6} \ln \relax (x )^{2}-300 x^{4} \ln \relax (x )^{2} {\mathrm e}^{5}+40 \,{\mathrm e}^{5} x^{4} \ln \relax (x )+{\mathrm e}^{15} \left (20 x^{2}+44 x \right )+{\mathrm e}^{10} \left (-20 x^{3}-66 x^{2}-72 x \right )-60 x^{3} {\mathrm e}^{10} \ln \relax (x )\) | \(436\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.38, size = 526, normalized size = 17.53 \begin {gather*} \frac {25}{49} \, {\left (49 \, \log \relax (x)^{2} - 14 \, \log \relax (x) + 2\right )} x^{7} - \frac {50}{9} \, {\left (18 \, {\left (e^{5} - 1\right )} \log \relax (x)^{2} - 6 \, {\left (e^{5} - 1\right )} \log \relax (x) + e^{5} - 1\right )} x^{6} - \frac {50}{49} \, x^{7} + \frac {50}{9} \, x^{6} {\left (e^{5} - 1\right )} + 6 \, {\left (25 \, {\left (e^{10} - 2 \, e^{5} + 1\right )} \log \relax (x)^{2} - 10 \, {\left (e^{10} - 2 \, e^{5} + 1\right )} \log \relax (x) + 2 \, e^{10} - 4 \, e^{5} + 2\right )} x^{5} - 2 \, x^{5} {\left (6 \, e^{10} - 12 \, e^{5} + 5\right )} - \frac {25}{2} \, {\left (8 \, {\left (e^{15} - 3 \, e^{10} + 3 \, e^{5} - 1\right )} \log \relax (x)^{2} - 4 \, {\left (e^{15} - 3 \, e^{10} + 3 \, e^{5} - 1\right )} \log \relax (x) + e^{15} - 3 \, e^{10} + 3 \, e^{5} - 1\right )} x^{4} - 2 \, x^{5} + \frac {5}{2} \, x^{4} {\left (5 \, e^{15} - 15 \, e^{10} + 11 \, e^{5} - 1\right )} + \frac {25}{9} \, {\left (9 \, {\left (e^{20} - 4 \, e^{15} + 6 \, e^{10} - 4 \, e^{5} + 1\right )} \log \relax (x)^{2} - 6 \, {\left (e^{20} - 4 \, e^{15} + 6 \, e^{10} - 4 \, e^{5} + 1\right )} \log \relax (x) + 2 \, e^{20} - 8 \, e^{15} + 12 \, e^{10} - 8 \, e^{5} + 2\right )} x^{3} - 11 \, x^{4} - \frac {10}{9} \, x^{3} {\left (5 \, e^{20} - 20 \, e^{15} + 12 \, e^{10} + 16 \, e^{5} - 13\right )} - 24 \, x^{3} - 20 \, x^{2} {\left (e^{15} - 3 \, e^{10} + 3 \, e^{5} - 1\right )} - 26 \, x^{2} + 10 \, x {\left (e^{20} - 4 \, e^{15} + 6 \, e^{10} - 4 \, e^{5} + 1\right )} - 10 \, x e^{20} + 4 \, {\left (5 \, x^{2} + 11 \, x\right )} e^{15} - 2 \, {\left (10 \, x^{3} + 33 \, x^{2} + 36 \, x\right )} e^{10} + 2 \, {\left (5 \, x^{4} + 22 \, x^{3} + 36 \, x^{2} + 26 \, x\right )} e^{5} + \frac {10}{21} \, {\left (15 \, x^{7} + 70 \, x^{6} + 105 \, x^{5} + 21 \, x^{4} - 91 \, x^{3} - 84 \, x^{2} + 7 \, {\left (5 \, x^{3} - 3 \, x\right )} e^{20} - 7 \, {\left (15 \, x^{4} + 20 \, x^{3} - 12 \, x^{2} - 12 \, x\right )} e^{15} + 21 \, {\left (6 \, x^{5} + 15 \, x^{4} + 4 \, x^{3} - 12 \, x^{2} - 6 \, x\right )} e^{10} - 7 \, {\left (10 \, x^{6} + 36 \, x^{5} + 33 \, x^{4} - 16 \, x^{3} - 36 \, x^{2} - 12 \, x\right )} e^{5} - 21 \, x\right )} \log \relax (x) - 14 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.62, size = 153, normalized size = 5.10 \begin {gather*} x\,\left (4\,{\left ({\mathrm {e}}^5-1\right )}^3-10\,\ln \relax (x)\,{\left ({\mathrm {e}}^5-1\right )}^4\right )+25\,x^7\,{\ln \relax (x)}^2-x^2\,\left (6\,{\left ({\mathrm {e}}^5-1\right )}^2-40\,\ln \relax (x)\,{\left ({\mathrm {e}}^5-1\right )}^3\right )+x^3\,\left (25\,{\left ({\mathrm {e}}^5-1\right )}^4\,{\ln \relax (x)}^2-60\,{\left ({\mathrm {e}}^5-1\right )}^2\,\ln \relax (x)+4\,{\mathrm {e}}^5-4\right )-x^5\,\left (10\,\ln \relax (x)-150\,{\ln \relax (x)}^2\,{\left ({\mathrm {e}}^5-1\right )}^2\right )-x^4\,\left (100\,{\left ({\mathrm {e}}^5-1\right )}^3\,{\ln \relax (x)}^2+\left (40-40\,{\mathrm {e}}^5\right )\,\ln \relax (x)+1\right )-x^6\,{\ln \relax (x)}^2\,\left (100\,{\mathrm {e}}^5-100\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.45, size = 267, normalized size = 8.90 \begin {gather*} - x^{4} + x^{3} \left (-4 + 4 e^{5}\right ) + x^{2} \left (- 6 e^{10} - 6 + 12 e^{5}\right ) + x \left (- 12 e^{10} - 4 + 12 e^{5} + 4 e^{15}\right ) + \left (- 10 x^{5} - 40 x^{4} + 40 x^{4} e^{5} - 60 x^{3} e^{10} - 60 x^{3} + 120 x^{3} e^{5} - 120 x^{2} e^{10} - 40 x^{2} + 120 x^{2} e^{5} + 40 x^{2} e^{15} - 10 x e^{20} - 60 x e^{10} - 10 x + 40 x e^{5} + 40 x e^{15}\right ) \log {\relax (x )} + \left (25 x^{7} - 100 x^{6} e^{5} + 100 x^{6} - 300 x^{5} e^{5} + 150 x^{5} + 150 x^{5} e^{10} - 100 x^{4} e^{15} - 300 x^{4} e^{5} + 100 x^{4} + 300 x^{4} e^{10} - 100 x^{3} e^{15} - 100 x^{3} e^{5} + 25 x^{3} + 150 x^{3} e^{10} + 25 x^{3} e^{20}\right ) \log {\relax (x )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________