Optimal. Leaf size=20 \[ 2-2 x+\log (x)+x \log \left (e^5 x (-4+x+\log (4))\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.27, antiderivative size = 21, normalized size of antiderivative = 1.05, number of steps used = 9, number of rules used = 7, integrand size = 59, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.119, Rules used = {6, 1593, 6742, 72, 2487, 31, 8} \begin {gather*} 3 x+x \log (-x (-x+4-\log (4)))+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 8
Rule 31
Rule 72
Rule 1593
Rule 2487
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4+5 x+(1-x) \log (4)+\left (-4 x+x^2+x \log (4)\right ) \log \left (e^5 \left (-4 x+x^2\right )+e^5 x \log (4)\right )}{x^2+x (-4+\log (4))} \, dx\\ &=\int \frac {-4+5 x+(1-x) \log (4)+\left (-4 x+x^2+x \log (4)\right ) \log \left (e^5 \left (-4 x+x^2\right )+e^5 x \log (4)\right )}{x (-4+x+\log (4))} \, dx\\ &=\int \left (5+\frac {4-x (5-\log (4))-\log (4)}{x (4-x-\log (4))}+\log (x (-4+x+\log (4)))\right ) \, dx\\ &=5 x+\int \frac {4-x (5-\log (4))-\log (4)}{x (4-x-\log (4))} \, dx+\int \log (x (-4+x+\log (4))) \, dx\\ &=5 x+x \log (-x (4-x-\log (4)))-2 \int 1 \, dx+(-4+\log (4)) \int \frac {1}{-4+x+\log (4)} \, dx+\int \left (\frac {1}{x}+\frac {4-\log (4)}{-4+x+\log (4)}\right ) \, dx\\ &=3 x+\log (x)+x \log (-x (4-x-\log (4)))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 16, normalized size = 0.80 \begin {gather*} 3 x+\log (x)+x \log (x (-4+x+\log (4))) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 27, normalized size = 1.35 \begin {gather*} x \log \left (2 \, x e^{5} \log \relax (2) + {\left (x^{2} - 4 \, x\right )} e^{5}\right ) - 2 \, x + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 21, normalized size = 1.05 \begin {gather*} x \log \left (x^{2} + 2 \, x \log \relax (2) - 4 \, x\right ) + 3 \, x + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.48, size = 28, normalized size = 1.40
method | result | size |
norman | \(x \ln \left (2 x \,{\mathrm e}^{5} \ln \relax (2)+\left (x^{2}-4 x \right ) {\mathrm e}^{5}\right )-2 x +\ln \relax (x )\) | \(28\) |
risch | \(x \ln \left (2 x \,{\mathrm e}^{5} \ln \relax (2)+\left (x^{2}-4 x \right ) {\mathrm e}^{5}\right )-2 x +\ln \relax (x )\) | \(28\) |
default | \(\ln \relax (x )+\ln \left (2 x \,{\mathrm e}^{5} \ln \relax (2)+x^{2} {\mathrm e}^{5}-4 x \,{\mathrm e}^{5}\right ) x -2 x\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.52, size = 102, normalized size = 5.10 \begin {gather*} -{\left (\frac {\log \left (x + 2 \, \log \relax (2) - 4\right )}{\log \relax (2) - 2} - \frac {\log \relax (x)}{\log \relax (2) - 2}\right )} \log \relax (2) + {\left (x + 2 \, \log \relax (2) - 4\right )} \log \left (x + 2 \, \log \relax (2) - 4\right ) - 2 \, \log \relax (2) \log \left (x + 2 \, \log \relax (2) - 4\right ) + x \log \relax (x) + 3 \, x + \frac {2 \, \log \left (x + 2 \, \log \relax (2) - 4\right )}{\log \relax (2) - 2} - \frac {2 \, \log \relax (x)}{\log \relax (2) - 2} + 5 \, \log \left (x + 2 \, \log \relax (2) - 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.41, size = 30, normalized size = 1.50 \begin {gather*} \ln \relax (x)-2\,x+x\,\ln \left (2\,x\,{\mathrm {e}}^5\,\ln \relax (2)-{\mathrm {e}}^5\,\left (4\,x-x^2\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 29, normalized size = 1.45 \begin {gather*} x \log {\left (2 x e^{5} \log {\relax (2 )} + \left (x^{2} - 4 x\right ) e^{5} \right )} - 2 x + \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________