Optimal. Leaf size=27 \[ 4+\frac {1}{2} e^{3-\frac {3 e^4}{x}}+e^{-3+x} x+\log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.25, antiderivative size = 35, normalized size of antiderivative = 1.30, number of steps used = 6, number of rules used = 5, integrand size = 55, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {12, 6688, 2209, 2176, 2194} \begin {gather*} e^{x-3} (x+1)+\frac {1}{2} e^{3-\frac {3 e^4}{x}}-e^{x-3}+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 2209
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {e^{-\frac {3 e^4}{x}} \left (3 e^7+e^{\frac {3 e^4}{x}} \left (2 x+e^{-3+x} \left (2 x^2+2 x^3\right )\right )\right )}{x^2} \, dx\\ &=\frac {1}{2} \int \left (\frac {3 e^{7-\frac {3 e^4}{x}}}{x^2}+\frac {2}{x}+2 e^{-3+x} (1+x)\right ) \, dx\\ &=\log (x)+\frac {3}{2} \int \frac {e^{7-\frac {3 e^4}{x}}}{x^2} \, dx+\int e^{-3+x} (1+x) \, dx\\ &=\frac {1}{2} e^{3-\frac {3 e^4}{x}}+e^{-3+x} (1+x)+\log (x)-\int e^{-3+x} \, dx\\ &=\frac {1}{2} e^{3-\frac {3 e^4}{x}}-e^{-3+x}+e^{-3+x} (1+x)+\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 26, normalized size = 0.96 \begin {gather*} \frac {1}{2} e^{3-\frac {3 e^4}{x}}+e^{-3+x} x+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 39, normalized size = 1.44 \begin {gather*} \frac {1}{2} \, {\left (2 \, x e^{\left (x + \frac {3 \, e^{4}}{x} - 3\right )} + 2 \, e^{\left (\frac {3 \, e^{4}}{x}\right )} \log \relax (x) + e^{3}\right )} e^{\left (-\frac {3 \, e^{4}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 26, normalized size = 0.96 \begin {gather*} {\left (x e^{x} + e^{3} \log \relax (x)\right )} e^{\left (-3\right )} + \frac {1}{2} \, e^{\left (-\frac {3 \, e^{4}}{x} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 24, normalized size = 0.89
method | result | size |
risch | \(\ln \relax (x )+x \,{\mathrm e}^{x -3}+\frac {{\mathrm e}^{-\frac {3 \left ({\mathrm e}^{4}-x \right )}{x}}}{2}\) | \(24\) |
default | \(\ln \relax (x )+{\mathrm e}^{x} {\mathrm e}^{-3}+{\mathrm e}^{-3} \left ({\mathrm e}^{x} x -{\mathrm e}^{x}\right )+\frac {{\mathrm e}^{3} {\mathrm e}^{-\frac {3 \,{\mathrm e}^{4}}{x}}}{2}\) | \(34\) |
norman | \(\frac {\left ({\mathrm e}^{x -3} {\mathrm e}^{\frac {3 \,{\mathrm e}^{4}}{x}} x^{2}+\frac {x \,{\mathrm e}^{3}}{2}\right ) {\mathrm e}^{-\frac {3 \,{\mathrm e}^{4}}{x}}}{x}+\ln \relax (x )\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 27, normalized size = 1.00 \begin {gather*} {\left (x - 1\right )} e^{\left (x - 3\right )} + e^{\left (x - 3\right )} + \frac {1}{2} \, e^{\left (-\frac {3 \, e^{4}}{x} + 3\right )} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.39, size = 21, normalized size = 0.78 \begin {gather*} \ln \relax (x)+\frac {{\mathrm {e}}^{-\frac {3\,{\mathrm {e}}^4}{x}}\,{\mathrm {e}}^3}{2}+x\,{\mathrm {e}}^{-3}\,{\mathrm {e}}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 22, normalized size = 0.81 \begin {gather*} x e^{x - 3} + \log {\relax (x )} + \frac {e^{3} e^{- \frac {3 e^{4}}{x}}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________