Optimal. Leaf size=27 \[ \frac {1}{4} e^{-2 x} \left (3+x-\left (-4+e^{\frac {9}{\log ^2(x)}}\right ) x^2\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.44, antiderivative size = 71, normalized size of antiderivative = 2.63, number of steps used = 10, number of rules used = 5, integrand size = 56, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.089, Rules used = {12, 6742, 2194, 2176, 2288} \begin {gather*} e^{-2 x} x^2+\frac {1}{4} e^{-2 x} x+\frac {3 e^{-2 x}}{4}-\frac {x e^{\frac {9}{\log ^2(x)}-2 x} \left (x \log ^3(x)+9\right )}{4 \left (\frac {9}{x \log ^3(x)}+1\right ) \log ^3(x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 2288
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \frac {e^{-2 x} \left (\left (-5+6 x-8 x^2\right ) \log ^3(x)+e^{\frac {9}{\log ^2(x)}} \left (18 x+\left (-2 x+2 x^2\right ) \log ^3(x)\right )\right )}{\log ^3(x)} \, dx\\ &=\frac {1}{4} \int \left (-5 e^{-2 x}+6 e^{-2 x} x-8 e^{-2 x} x^2+\frac {2 e^{-2 x+\frac {9}{\log ^2(x)}} x \left (9-\log ^3(x)+x \log ^3(x)\right )}{\log ^3(x)}\right ) \, dx\\ &=\frac {1}{2} \int \frac {e^{-2 x+\frac {9}{\log ^2(x)}} x \left (9-\log ^3(x)+x \log ^3(x)\right )}{\log ^3(x)} \, dx-\frac {5}{4} \int e^{-2 x} \, dx+\frac {3}{2} \int e^{-2 x} x \, dx-2 \int e^{-2 x} x^2 \, dx\\ &=\frac {5 e^{-2 x}}{8}-\frac {3}{4} e^{-2 x} x+e^{-2 x} x^2-\frac {e^{-2 x+\frac {9}{\log ^2(x)}} x \left (9+x \log ^3(x)\right )}{4 \left (1+\frac {9}{x \log ^3(x)}\right ) \log ^3(x)}+\frac {3}{4} \int e^{-2 x} \, dx-2 \int e^{-2 x} x \, dx\\ &=\frac {e^{-2 x}}{4}+\frac {1}{4} e^{-2 x} x+e^{-2 x} x^2-\frac {e^{-2 x+\frac {9}{\log ^2(x)}} x \left (9+x \log ^3(x)\right )}{4 \left (1+\frac {9}{x \log ^3(x)}\right ) \log ^3(x)}-\int e^{-2 x} \, dx\\ &=\frac {3 e^{-2 x}}{4}+\frac {1}{4} e^{-2 x} x+e^{-2 x} x^2-\frac {e^{-2 x+\frac {9}{\log ^2(x)}} x \left (9+x \log ^3(x)\right )}{4 \left (1+\frac {9}{x \log ^3(x)}\right ) \log ^3(x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.38, size = 27, normalized size = 1.00 \begin {gather*} \frac {1}{4} e^{-2 x} \left (3+x-\left (-4+e^{\frac {9}{\log ^2(x)}}\right ) x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 31, normalized size = 1.15 \begin {gather*} -\frac {1}{4} \, x^{2} e^{\left (-2 \, x + \frac {9}{\log \relax (x)^{2}}\right )} + \frac {1}{4} \, {\left (4 \, x^{2} + x + 3\right )} e^{\left (-2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 37, normalized size = 1.37
method | result | size |
risch | \(\frac {\left (4 x^{2}+x +3\right ) {\mathrm e}^{-2 x}}{4}-\frac {x^{2} {\mathrm e}^{-\frac {2 x \ln \relax (x )^{2}-9}{\ln \relax (x )^{2}}}}{4}\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.44, size = 50, normalized size = 1.85 \begin {gather*} -\frac {1}{4} \, x^{2} e^{\left (-2 \, x + \frac {9}{\log \relax (x)^{2}}\right )} + \frac {1}{2} \, {\left (2 \, x^{2} + 2 \, x + 1\right )} e^{\left (-2 \, x\right )} - \frac {3}{8} \, {\left (2 \, x + 1\right )} e^{\left (-2 \, x\right )} + \frac {5}{8} \, e^{\left (-2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {{\mathrm {e}}^{-2\,x}\,\left (\frac {{\ln \relax (x)}^3\,\left (8\,x^2-6\,x+5\right )}{4}-\frac {{\mathrm {e}}^{\frac {9}{{\ln \relax (x)}^2}}\,\left (18\,x-{\ln \relax (x)}^3\,\left (2\,x-2\,x^2\right )\right )}{4}\right )}{{\ln \relax (x)}^3} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 13.20, size = 26, normalized size = 0.96 \begin {gather*} \frac {\left (- x^{2} e^{\frac {9}{\log {\relax (x )}^{2}}} + 4 x^{2} + x + 3\right ) e^{- 2 x}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________