Optimal. Leaf size=34 \[ \frac {\log \left (x^2\right )}{\log \left (5+\frac {1}{5} \left (2-e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 29.11, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-5400+2160 x^3-216 x^6+e^{e^{\frac {x}{-20+4 x^3}}} \left (200-80 x^3+8 x^6\right )\right ) \log \left (\frac {1}{5} \left (27-e^{e^{\frac {x}{-20+4 x^3}}}\right )\right )+e^{e^{\frac {x}{-20+4 x^3}}+\frac {x}{-20+4 x^3}} \left (5 x+2 x^4\right ) \log \left (x^2\right )}{\left (-2700 x+1080 x^4-108 x^7+e^{e^{\frac {x}{-20+4 x^3}}} \left (100 x-40 x^4+4 x^7\right )\right ) \log ^2\left (\frac {1}{5} \left (27-e^{e^{\frac {x}{-20+4 x^3}}}\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\frac {8 \log \left (\frac {1}{5} \left (27-e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right )\right )}{x}+\frac {e^{e^{\frac {x}{4 \left (-5+x^3\right )}}+\frac {x}{4 \left (-5+x^3\right )}} \left (5+2 x^3\right ) \log \left (x^2\right )}{\left (-27+e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right ) \left (-5+x^3\right )^2}}{4 \log ^2\left (\frac {1}{5} \left (27-e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right )\right )} \, dx\\ &=\frac {1}{4} \int \frac {\frac {8 \log \left (\frac {1}{5} \left (27-e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right )\right )}{x}+\frac {e^{e^{\frac {x}{4 \left (-5+x^3\right )}}+\frac {x}{4 \left (-5+x^3\right )}} \left (5+2 x^3\right ) \log \left (x^2\right )}{\left (-27+e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right ) \left (-5+x^3\right )^2}}{\log ^2\left (\frac {1}{5} \left (27-e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right )\right )} \, dx\\ &=\frac {1}{4} \int \left (\frac {8}{x \log \left (\frac {1}{5} \left (27-e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right )\right )}+\frac {e^{e^{\frac {x}{4 \left (-5+x^3\right )}}+\frac {x}{4 \left (-5+x^3\right )}} \left (5+2 x^3\right ) \log \left (x^2\right )}{\left (-27+e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right ) \left (-5+x^3\right )^2 \log ^2\left (\frac {1}{5} \left (27-e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right )\right )}\right ) \, dx\\ &=\frac {1}{4} \int \frac {e^{e^{\frac {x}{4 \left (-5+x^3\right )}}+\frac {x}{4 \left (-5+x^3\right )}} \left (5+2 x^3\right ) \log \left (x^2\right )}{\left (-27+e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right ) \left (-5+x^3\right )^2 \log ^2\left (\frac {1}{5} \left (27-e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right )\right )} \, dx+2 \int \frac {1}{x \log \left (\frac {1}{5} \left (27-e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right )\right )} \, dx\\ &=\frac {1}{4} \int \left (\frac {15 e^{e^{\frac {x}{4 \left (-5+x^3\right )}}+\frac {x}{4 \left (-5+x^3\right )}} \log \left (x^2\right )}{\left (-27+e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right ) \left (-5+x^3\right )^2 \log ^2\left (\frac {1}{5} \left (27-e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right )\right )}+\frac {2 e^{e^{\frac {x}{4 \left (-5+x^3\right )}}+\frac {x}{4 \left (-5+x^3\right )}} \log \left (x^2\right )}{\left (-27+e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right ) \left (-5+x^3\right ) \log ^2\left (\frac {1}{5} \left (27-e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right )\right )}\right ) \, dx+2 \int \frac {1}{x \log \left (\frac {1}{5} \left (27-e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right )\right )} \, dx\\ &=\frac {1}{2} \int \frac {e^{e^{\frac {x}{4 \left (-5+x^3\right )}}+\frac {x}{4 \left (-5+x^3\right )}} \log \left (x^2\right )}{\left (-27+e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right ) \left (-5+x^3\right ) \log ^2\left (\frac {1}{5} \left (27-e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right )\right )} \, dx+2 \int \frac {1}{x \log \left (\frac {1}{5} \left (27-e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right )\right )} \, dx+\frac {15}{4} \int \frac {e^{e^{\frac {x}{4 \left (-5+x^3\right )}}+\frac {x}{4 \left (-5+x^3\right )}} \log \left (x^2\right )}{\left (-27+e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right ) \left (-5+x^3\right )^2 \log ^2\left (\frac {1}{5} \left (27-e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right )\right )} \, dx\\ &=\frac {1}{2} \int \left (-\frac {e^{e^{\frac {x}{4 \left (-5+x^3\right )}}+\frac {x}{4 \left (-5+x^3\right )}} \log \left (x^2\right )}{3\ 5^{2/3} \left (-27+e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right ) \left (\sqrt [3]{5}-x\right ) \log ^2\left (\frac {1}{5} \left (27-e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right )\right )}-\frac {e^{e^{\frac {x}{4 \left (-5+x^3\right )}}+\frac {x}{4 \left (-5+x^3\right )}} \log \left (x^2\right )}{3\ 5^{2/3} \left (-27+e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right ) \left (\sqrt [3]{5}+\sqrt [3]{-1} x\right ) \log ^2\left (\frac {1}{5} \left (27-e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right )\right )}-\frac {e^{e^{\frac {x}{4 \left (-5+x^3\right )}}+\frac {x}{4 \left (-5+x^3\right )}} \log \left (x^2\right )}{3\ 5^{2/3} \left (-27+e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right ) \left (\sqrt [3]{5}-(-1)^{2/3} x\right ) \log ^2\left (\frac {1}{5} \left (27-e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right )\right )}\right ) \, dx+2 \int \frac {1}{x \log \left (\frac {1}{5} \left (27-e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right )\right )} \, dx+\frac {15}{4} \int \frac {e^{e^{\frac {x}{4 \left (-5+x^3\right )}}+\frac {x}{4 \left (-5+x^3\right )}} \log \left (x^2\right )}{\left (-27+e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right ) \left (-5+x^3\right )^2 \log ^2\left (\frac {1}{5} \left (27-e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right )\right )} \, dx\\ &=2 \int \frac {1}{x \log \left (\frac {1}{5} \left (27-e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right )\right )} \, dx+\frac {15}{4} \int \frac {e^{e^{\frac {x}{4 \left (-5+x^3\right )}}+\frac {x}{4 \left (-5+x^3\right )}} \log \left (x^2\right )}{\left (-27+e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right ) \left (-5+x^3\right )^2 \log ^2\left (\frac {1}{5} \left (27-e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right )\right )} \, dx-\frac {\int \frac {e^{e^{\frac {x}{4 \left (-5+x^3\right )}}+\frac {x}{4 \left (-5+x^3\right )}} \log \left (x^2\right )}{\left (-27+e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right ) \left (\sqrt [3]{5}-x\right ) \log ^2\left (\frac {1}{5} \left (27-e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right )\right )} \, dx}{6\ 5^{2/3}}-\frac {\int \frac {e^{e^{\frac {x}{4 \left (-5+x^3\right )}}+\frac {x}{4 \left (-5+x^3\right )}} \log \left (x^2\right )}{\left (-27+e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right ) \left (\sqrt [3]{5}+\sqrt [3]{-1} x\right ) \log ^2\left (\frac {1}{5} \left (27-e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right )\right )} \, dx}{6\ 5^{2/3}}-\frac {\int \frac {e^{e^{\frac {x}{4 \left (-5+x^3\right )}}+\frac {x}{4 \left (-5+x^3\right )}} \log \left (x^2\right )}{\left (-27+e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right ) \left (\sqrt [3]{5}-(-1)^{2/3} x\right ) \log ^2\left (\frac {1}{5} \left (27-e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right )\right )} \, dx}{6\ 5^{2/3}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.36, size = 32, normalized size = 0.94 \begin {gather*} \frac {\log \left (x^2\right )}{\log \left (\frac {1}{5} \left (27-e^{e^{\frac {x}{4 \left (-5+x^3\right )}}}\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.63, size = 65, normalized size = 1.91 \begin {gather*} \frac {\log \left (x^{2}\right )}{\log \left (-\frac {1}{5} \, {\left (e^{\left (\frac {4 \, {\left (x^{3} - 5\right )} e^{\left (\frac {x}{4 \, {\left (x^{3} - 5\right )}}\right )} + x}{4 \, {\left (x^{3} - 5\right )}}\right )} - 27 \, e^{\left (\frac {x}{4 \, {\left (x^{3} - 5\right )}}\right )}\right )} e^{\left (-\frac {x}{4 \, {\left (x^{3} - 5\right )}}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (2 \, x^{4} + 5 \, x\right )} e^{\left (\frac {x}{4 \, {\left (x^{3} - 5\right )}} + e^{\left (\frac {x}{4 \, {\left (x^{3} - 5\right )}}\right )}\right )} \log \left (x^{2}\right ) - 8 \, {\left (27 \, x^{6} - 270 \, x^{3} - {\left (x^{6} - 10 \, x^{3} + 25\right )} e^{\left (e^{\left (\frac {x}{4 \, {\left (x^{3} - 5\right )}}\right )}\right )} + 675\right )} \log \left (-\frac {1}{5} \, e^{\left (e^{\left (\frac {x}{4 \, {\left (x^{3} - 5\right )}}\right )}\right )} + \frac {27}{5}\right )}{4 \, {\left (27 \, x^{7} - 270 \, x^{4} - {\left (x^{7} - 10 \, x^{4} + 25 \, x\right )} e^{\left (e^{\left (\frac {x}{4 \, {\left (x^{3} - 5\right )}}\right )}\right )} + 675 \, x\right )} \log \left (-\frac {1}{5} \, e^{\left (e^{\left (\frac {x}{4 \, {\left (x^{3} - 5\right )}}\right )}\right )} + \frac {27}{5}\right )^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.31, size = 76, normalized size = 2.24
method | result | size |
risch | \(\frac {4 \ln \relax (x )-i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}}{2 \ln \left (-\frac {{\mathrm e}^{{\mathrm e}^{\frac {x}{4 x^{3}-20}}}}{5}+\frac {27}{5}\right )}\) | \(76\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.76, size = 28, normalized size = 0.82 \begin {gather*} -\frac {2 \, \log \relax (x)}{\log \relax (5) - \log \left (-e^{\left (e^{\left (\frac {x}{4 \, {\left (x^{3} - 5\right )}}\right )}\right )} + 27\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {\ln \left (\frac {27}{5}-\frac {{\mathrm {e}}^{{\mathrm {e}}^{\frac {x}{4\,x^3-20}}}}{5}\right )\,\left ({\mathrm {e}}^{{\mathrm {e}}^{\frac {x}{4\,x^3-20}}}\,\left (8\,x^6-80\,x^3+200\right )+2160\,x^3-216\,x^6-5400\right )+\ln \left (x^2\right )\,{\mathrm {e}}^{\frac {x}{4\,x^3-20}}\,{\mathrm {e}}^{{\mathrm {e}}^{\frac {x}{4\,x^3-20}}}\,\left (2\,x^4+5\,x\right )}{{\ln \left (\frac {27}{5}-\frac {{\mathrm {e}}^{{\mathrm {e}}^{\frac {x}{4\,x^3-20}}}}{5}\right )}^2\,\left (2700\,x-{\mathrm {e}}^{{\mathrm {e}}^{\frac {x}{4\,x^3-20}}}\,\left (4\,x^7-40\,x^4+100\,x\right )-1080\,x^4+108\,x^7\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 23.29, size = 22, normalized size = 0.65 \begin {gather*} \frac {\log {\left (x^{2} \right )}}{\log {\left (\frac {27}{5} - \frac {e^{e^{\frac {x}{4 x^{3} - 20}}}}{5} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________