Optimal. Leaf size=26 \[ -1+\frac {1}{3} (4+x-(-5+e) x) \left (x^3-\frac {\log (2)}{x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 29, normalized size of antiderivative = 1.12, number of steps used = 4, number of rules used = 3, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.107, Rules used = {6, 12, 14} \begin {gather*} \frac {1}{3} (6-e) x^4+\frac {4 x^3}{3}-\frac {\log (16)}{3 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 14
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {12 x^4+(24-4 e) x^5+4 \log (2)}{3 x^2} \, dx\\ &=\frac {1}{3} \int \frac {12 x^4+(24-4 e) x^5+4 \log (2)}{x^2} \, dx\\ &=\frac {1}{3} \int \left (12 x^2-4 (-6+e) x^3+\frac {\log (16)}{x^2}\right ) \, dx\\ &=\frac {4 x^3}{3}+\frac {1}{3} (6-e) x^4-\frac {\log (16)}{3 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 27, normalized size = 1.04 \begin {gather*} \frac {4}{3} \left (x^3+\frac {1}{4} (6-e) x^4-\frac {\log (2)}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 26, normalized size = 1.00 \begin {gather*} -\frac {x^{5} e - 6 \, x^{5} - 4 \, x^{4} + 4 \, \log \relax (2)}{3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 25, normalized size = 0.96 \begin {gather*} -\frac {1}{3} \, x^{4} e + 2 \, x^{4} + \frac {4}{3} \, x^{3} - \frac {4 \, \log \relax (2)}{3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 25, normalized size = 0.96
method | result | size |
norman | \(\frac {\left (-\frac {{\mathrm e}}{3}+2\right ) x^{5}+\frac {4 x^{4}}{3}-\frac {4 \ln \relax (2)}{3}}{x}\) | \(25\) |
default | \(-\frac {x^{4} {\mathrm e}}{3}+2 x^{4}+\frac {4 x^{3}}{3}-\frac {4 \ln \relax (2)}{3 x}\) | \(26\) |
risch | \(-\frac {x^{4} {\mathrm e}}{3}+2 x^{4}+\frac {4 x^{3}}{3}-\frac {4 \ln \relax (2)}{3 x}\) | \(26\) |
gosper | \(-\frac {x^{5} {\mathrm e}-6 x^{5}-4 x^{4}+4 \ln \relax (2)}{3 x}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 22, normalized size = 0.85 \begin {gather*} -\frac {1}{3} \, x^{4} {\left (e - 6\right )} + \frac {4}{3} \, x^{3} - \frac {4 \, \log \relax (2)}{3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.05, size = 24, normalized size = 0.92 \begin {gather*} \frac {4\,x^3}{3}-\frac {4\,\ln \relax (2)}{3\,x}-x^4\,\left (\frac {\mathrm {e}}{3}-2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 24, normalized size = 0.92 \begin {gather*} \frac {x^{4} \left (6 - e\right )}{3} + \frac {4 x^{3}}{3} - \frac {4 \log {\relax (2 )}}{3 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________