Optimal. Leaf size=25 \[ \log \left (3-x+\frac {x \log \left (\frac {\log (15)}{1-x}\right )}{1+\log (16)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.25, antiderivative size = 25, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 71, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.028, Rules used = {6741, 6684} \begin {gather*} \log \left (x \log \left (\frac {\log (15)}{1-x}\right )-x (1+\log (16))+3+\log (4096)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-1+2 x-(1-x) \log (16)-(-1+x) \log \left (-\frac {\log (15)}{-1+x}\right )}{(1-x) \left (3 (1+\log (16))-x (1+\log (16))+x \log \left (-\frac {\log (15)}{-1+x}\right )\right )} \, dx\\ &=\log \left (3-x (1+\log (16))+\log (4096)+x \log \left (\frac {\log (15)}{1-x}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.68, size = 41, normalized size = 1.64 \begin {gather*} \log \left (3-x+2 \log (16)-(-1+x) \log (16)+\log \left (-\frac {\log (15)}{-1+x}\right )+(-1+x) \log \left (-\frac {\log (15)}{-1+x}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.84, size = 32, normalized size = 1.28 \begin {gather*} \log \relax (x) + \log \left (-\frac {4 \, {\left (x - 3\right )} \log \relax (2) - x \log \left (-\frac {\log \left (15\right )}{x - 1}\right ) + x - 3}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.29, size = 86, normalized size = 3.44 \begin {gather*} \frac {\log \left (15\right ) \log \left (4 \, \log \left (15\right ) \log \relax (2) - \log \left (15\right ) \log \left (-\frac {\log \left (15\right )}{x - 1}\right ) - \frac {8 \, \log \left (15\right ) \log \relax (2)}{x - 1} - \frac {\log \left (15\right ) \log \left (-\frac {\log \left (15\right )}{x - 1}\right )}{x - 1} - \frac {2 \, \log \left (15\right )}{x - 1} + \log \left (15\right )\right ) - \log \left (15\right ) \log \left (-\frac {\log \left (15\right )}{x - 1}\right )}{\log \left (15\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 27, normalized size = 1.08
method | result | size |
norman | \(\ln \left (4 x \ln \relax (2)-\ln \left (-\frac {\ln \left (15\right )}{x -1}\right ) x -12 \ln \relax (2)+x -3\right )\) | \(27\) |
risch | \(\ln \relax (x )+\ln \left (\ln \left (-\frac {\ln \relax (3)+\ln \relax (5)}{x -1}\right )-\frac {4 x \ln \relax (2)-12 \ln \relax (2)+x -3}{x}\right )\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.58, size = 38, normalized size = 1.52 \begin {gather*} \log \relax (x) + \log \left (\frac {x {\left (4 \, \log \relax (2) - \log \left (\log \relax (5) + \log \relax (3)\right ) + 1\right )} + x \log \left (-x + 1\right ) - 12 \, \log \relax (2) - 3}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {2\,x+4\,\ln \relax (2)\,\left (x-1\right )-\ln \left (-\frac {\ln \left (15\right )}{x-1}\right )\,\left (x-1\right )-1}{x^2-4\,x+4\,\ln \relax (2)\,\left (x^2-4\,x+3\right )+\ln \left (-\frac {\ln \left (15\right )}{x-1}\right )\,\left (x-x^2\right )+3} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 31, normalized size = 1.24 \begin {gather*} \log {\relax (x )} + \log {\left (\log {\left (- \frac {\log {\left (15 \right )}}{x - 1} \right )} + \frac {- 4 x \log {\relax (2 )} - x + 3 + 12 \log {\relax (2 )}}{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________