Optimal. Leaf size=18 \[ \log \left (30 x \left (x^2+\frac {2}{-x+\log (4)}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 26, normalized size of antiderivative = 1.44, number of steps used = 3, number of rules used = 2, integrand size = 57, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.035, Rules used = {2074, 1587} \begin {gather*} \log \left (-x^3+x^2 \log (4)+2\right )+\log (x)-\log (x-\log (4)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1587
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1}{x}+\frac {1}{-x+\log (4)}+\frac {x (3 x-2 \log (4))}{-2+x^3-x^2 \log (4)}\right ) \, dx\\ &=\log (x)-\log (x-\log (4))+\int \frac {x (3 x-2 \log (4))}{-2+x^3-x^2 \log (4)} \, dx\\ &=\log (x)-\log (x-\log (4))+\log \left (2-x^3+x^2 \log (4)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [C] time = 0.05, size = 109, normalized size = 6.06 \begin {gather*} \log (x)+\text {RootSum}\left [\log (16)-2 \text {$\#$1}+\log ^2(4) \text {$\#$1}^2-2 \log (4) \text {$\#$1}^3+\text {$\#$1}^4\&,\frac {\log (x-\text {$\#$1})+\log ^2(4) \log (x-\text {$\#$1}) \text {$\#$1}-2 \log (4) \log (x-\text {$\#$1}) \text {$\#$1}^2+\log (x-\text {$\#$1}) \text {$\#$1}^3}{-1+\log ^2(4) \text {$\#$1}-3 \log (4) \text {$\#$1}^2+2 \text {$\#$1}^3}\&\right ] \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 25, normalized size = 1.39 \begin {gather*} \log \left (x^{4} - 2 \, x^{3} \log \relax (2) - 2 \, x\right ) - \log \left (x - 2 \, \log \relax (2)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 28, normalized size = 1.56 \begin {gather*} \log \left ({\left | x^{3} - 2 \, x^{2} \log \relax (2) - 2 \right |}\right ) - \log \left ({\left | x - 2 \, \log \relax (2) \right |}\right ) + \log \left ({\left | x \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 26, normalized size = 1.44
method | result | size |
default | \(\ln \left (-2 x^{2} \ln \relax (2)+x^{3}-2\right )-\ln \left (x -2 \ln \relax (2)\right )+\ln \relax (x )\) | \(26\) |
risch | \(-\ln \left (x -2 \ln \relax (2)\right )+\ln \left (-2 x^{3} \ln \relax (2)+x^{4}-2 x \right )\) | \(26\) |
norman | \(-\ln \left (2 \ln \relax (2)-x \right )+\ln \relax (x )+\ln \left (2 x^{2} \ln \relax (2)-x^{3}+2\right )\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 25, normalized size = 1.39 \begin {gather*} \log \left (x^{3} - 2 \, x^{2} \log \relax (2) - 2\right ) - \log \left (x - 2 \, \log \relax (2)\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.20, size = 25, normalized size = 1.39 \begin {gather*} \ln \left (x^4-2\,\ln \relax (2)\,x^3-2\,x\right )-\ln \left (x-\ln \relax (4)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.54, size = 24, normalized size = 1.33 \begin {gather*} - \log {\left (x - 2 \log {\relax (2 )} \right )} + \log {\left (x^{4} - 2 x^{3} \log {\relax (2 )} - 2 x \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________