Optimal. Leaf size=30 \[ \frac {x}{2}+\left (x+x \left (5+x+\frac {1}{3} \log (2 x)\right )\right ) \log \left (\frac {2+x}{3}\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.37, antiderivative size = 95, normalized size of antiderivative = 3.17, number of steps used = 24, number of rules used = 13, integrand size = 60, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {6742, 2295, 2395, 43, 2389, 2370, 2411, 2351, 2316, 2315, 698, 2317, 2391} \begin {gather*} \frac {x}{2}+\frac {1}{36} (6 x+19)^2 \log \left (\frac {x}{3}+\frac {2}{3}\right )+\frac {2}{3} \log \left (\frac {3}{2}\right ) \log (x)-\frac {2}{3} \log \left (\frac {x}{2}+1\right ) \log (2 x)-\frac {1}{3} (x+2) \log \left (\frac {x+2}{3}\right )+\frac {1}{3} (x+2) \log (2 x) \log \left (\frac {x+2}{3}\right )-\frac {337}{36} \log (x+2) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 43
Rule 698
Rule 2295
Rule 2315
Rule 2316
Rule 2317
Rule 2351
Rule 2370
Rule 2389
Rule 2391
Rule 2395
Rule 2411
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1}{3} \log \left (\frac {2}{3}+\frac {x}{3}\right ) (19+6 x+\log (2 x))+\frac {6+39 x+6 x^2+2 x \log (2 x)}{6 (2+x)}\right ) \, dx\\ &=\frac {1}{6} \int \frac {6+39 x+6 x^2+2 x \log (2 x)}{2+x} \, dx+\frac {1}{3} \int \log \left (\frac {2}{3}+\frac {x}{3}\right ) (19+6 x+\log (2 x)) \, dx\\ &=\frac {1}{6} \int \left (\frac {3 \left (2+13 x+2 x^2\right )}{2+x}+\frac {2 x \log (2 x)}{2+x}\right ) \, dx+\frac {1}{3} \int \left ((19+6 x) \log \left (\frac {2}{3}+\frac {x}{3}\right )+\log \left (\frac {2}{3}+\frac {x}{3}\right ) \log (2 x)\right ) \, dx\\ &=\frac {1}{3} \int (19+6 x) \log \left (\frac {2}{3}+\frac {x}{3}\right ) \, dx+\frac {1}{3} \int \frac {x \log (2 x)}{2+x} \, dx+\frac {1}{3} \int \log \left (\frac {2}{3}+\frac {x}{3}\right ) \log (2 x) \, dx+\frac {1}{2} \int \frac {2+13 x+2 x^2}{2+x} \, dx\\ &=\frac {1}{36} (19+6 x)^2 \log \left (\frac {2}{3}+\frac {x}{3}\right )-\frac {1}{3} x \log (2 x)+\frac {1}{3} (2+x) \log (2 x) \log \left (\frac {2+x}{3}\right )-\frac {1}{108} \int \frac {(19+6 x)^2}{\frac {2}{3}+\frac {x}{3}} \, dx+\frac {1}{3} \int \left (\log (2 x)-\frac {2 \log (2 x)}{2+x}\right ) \, dx-\frac {1}{3} \int \left (-1+\frac {(2+x) \log \left (\frac {2+x}{3}\right )}{x}\right ) \, dx+\frac {1}{2} \int \left (9+2 x-\frac {16}{2+x}\right ) \, dx\\ &=\frac {29 x}{6}+\frac {x^2}{2}+\frac {1}{36} (19+6 x)^2 \log \left (\frac {2}{3}+\frac {x}{3}\right )-\frac {1}{3} x \log (2 x)+\frac {1}{3} (2+x) \log (2 x) \log \left (\frac {2+x}{3}\right )-8 \log (2+x)-\frac {1}{108} \int \left (468+108 x+\frac {147}{2+x}\right ) \, dx+\frac {1}{3} \int \log (2 x) \, dx-\frac {1}{3} \int \frac {(2+x) \log \left (\frac {2+x}{3}\right )}{x} \, dx-\frac {2}{3} \int \frac {\log (2 x)}{2+x} \, dx\\ &=\frac {x}{6}+\frac {1}{36} (19+6 x)^2 \log \left (\frac {2}{3}+\frac {x}{3}\right )-\frac {2}{3} \log \left (1+\frac {x}{2}\right ) \log (2 x)+\frac {1}{3} (2+x) \log (2 x) \log \left (\frac {2+x}{3}\right )-\frac {337}{36} \log (2+x)-\frac {1}{3} \operatorname {Subst}\left (\int \frac {x \log \left (\frac {x}{3}\right )}{-2+x} \, dx,x,2+x\right )+\frac {2}{3} \int \frac {\log \left (1+\frac {x}{2}\right )}{x} \, dx\\ &=\frac {x}{6}+\frac {1}{36} (19+6 x)^2 \log \left (\frac {2}{3}+\frac {x}{3}\right )-\frac {2}{3} \log \left (1+\frac {x}{2}\right ) \log (2 x)+\frac {1}{3} (2+x) \log (2 x) \log \left (\frac {2+x}{3}\right )-\frac {337}{36} \log (2+x)-\frac {2 \text {Li}_2\left (-\frac {x}{2}\right )}{3}-\frac {1}{3} \operatorname {Subst}\left (\int \left (\log \left (\frac {x}{3}\right )+\frac {2 \log \left (\frac {x}{3}\right )}{-2+x}\right ) \, dx,x,2+x\right )\\ &=\frac {x}{6}+\frac {1}{36} (19+6 x)^2 \log \left (\frac {2}{3}+\frac {x}{3}\right )-\frac {2}{3} \log \left (1+\frac {x}{2}\right ) \log (2 x)+\frac {1}{3} (2+x) \log (2 x) \log \left (\frac {2+x}{3}\right )-\frac {337}{36} \log (2+x)-\frac {2 \text {Li}_2\left (-\frac {x}{2}\right )}{3}-\frac {1}{3} \operatorname {Subst}\left (\int \log \left (\frac {x}{3}\right ) \, dx,x,2+x\right )-\frac {2}{3} \operatorname {Subst}\left (\int \frac {\log \left (\frac {x}{3}\right )}{-2+x} \, dx,x,2+x\right )\\ &=\frac {x}{2}+\frac {1}{36} (19+6 x)^2 \log \left (\frac {2}{3}+\frac {x}{3}\right )+\frac {2}{3} \log \left (\frac {3}{2}\right ) \log (x)-\frac {2}{3} \log \left (1+\frac {x}{2}\right ) \log (2 x)-\frac {1}{3} (2+x) \log \left (\frac {2+x}{3}\right )+\frac {1}{3} (2+x) \log (2 x) \log \left (\frac {2+x}{3}\right )-\frac {337}{36} \log (2+x)-\frac {2 \text {Li}_2\left (-\frac {x}{2}\right )}{3}-\frac {2}{3} \operatorname {Subst}\left (\int \frac {\log \left (\frac {x}{2}\right )}{-2+x} \, dx,x,2+x\right )\\ &=\frac {x}{2}+\frac {1}{36} (19+6 x)^2 \log \left (\frac {2}{3}+\frac {x}{3}\right )+\frac {2}{3} \log \left (\frac {3}{2}\right ) \log (x)-\frac {2}{3} \log \left (1+\frac {x}{2}\right ) \log (2 x)-\frac {1}{3} (2+x) \log \left (\frac {2+x}{3}\right )+\frac {1}{3} (2+x) \log (2 x) \log \left (\frac {2+x}{3}\right )-\frac {337}{36} \log (2+x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 28, normalized size = 0.93 \begin {gather*} \frac {1}{6} \left (3 x+2 x (18+3 x+\log (2 x)) \log \left (\frac {2+x}{3}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 31, normalized size = 1.03 \begin {gather*} \frac {1}{3} \, x \log \left (2 \, x\right ) \log \left (\frac {1}{3} \, x + \frac {2}{3}\right ) + {\left (x^{2} + 6 \, x\right )} \log \left (\frac {1}{3} \, x + \frac {2}{3}\right ) + \frac {1}{2} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 47, normalized size = 1.57 \begin {gather*} -x^{2} \log \relax (3) - \frac {1}{2} \, x {\left (12 \, \log \relax (3) - 1\right )} - \frac {1}{3} \, {\left (x \log \relax (3) - x \log \left (x + 2\right )\right )} \log \left (2 \, x\right ) + {\left (x^{2} + 6 \, x\right )} \log \left (x + 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.40, size = 26, normalized size = 0.87
method | result | size |
risch | \(\left (\frac {x \ln \left (2 x \right )}{3}+x^{2}+6 x \right ) \ln \left (\frac {2}{3}+\frac {x}{3}\right )+\frac {x}{2}\) | \(26\) |
norman | \(\ln \left (\frac {2}{3}+\frac {x}{3}\right ) x^{2}+\frac {x}{2}+6 \ln \left (\frac {2}{3}+\frac {x}{3}\right ) x +\frac {\ln \left (2 x \right ) \ln \left (\frac {2}{3}+\frac {x}{3}\right ) x}{3}\) | \(37\) |
default | \(\left (2+x \right )^{2} \ln \left (2+x \right )+\frac {x}{2}-\frac {20}{3}+\frac {7 \left (2+x \right ) \ln \left (2+x \right )}{3}-\frac {26 \ln \left (2+x \right )}{3}-\frac {x \ln \left (2+x \right )}{3}+\frac {x \ln \relax (x ) \ln \left (2+x \right )}{3}+\frac {x \ln \relax (2) \ln \left (2+x \right )}{3}-\frac {x \ln \relax (2) \ln \relax (3)}{3}-\frac {2 \ln \relax (2)}{3}-\frac {x \ln \relax (3) \ln \relax (x )}{3}-x^{2} \ln \relax (3)-6 x \ln \relax (3)\) | \(86\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.52, size = 101, normalized size = 3.37 \begin {gather*} -\frac {1}{3} \, x \log \relax (3) \log \relax (x) - \frac {1}{3} \, {\left (\log \relax (3) \log \relax (2) - \log \relax (3) - 1\right )} x + \frac {1}{3} \, {\left (x {\left (\log \relax (2) - 1\right )} + x \log \relax (x) - 2\right )} \log \left (x + 2\right ) - \frac {38}{3} \, \log \relax (3) \log \left (x + 2\right ) + \frac {38}{3} \, \log \left (x + 2\right )^{2} + {\left (x^{2} - 4 \, x + 8 \, \log \left (x + 2\right )\right )} \log \left (\frac {1}{3} \, x + \frac {2}{3}\right ) + \frac {31}{3} \, {\left (x - 2 \, \log \left (x + 2\right )\right )} \log \left (\frac {1}{3} \, x + \frac {2}{3}\right ) + \frac {1}{6} \, x + \frac {2}{3} \, \log \left (x + 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.24, size = 25, normalized size = 0.83 \begin {gather*} \frac {x}{2}+\ln \left (\frac {x}{3}+\frac {2}{3}\right )\,\left (6\,x+\frac {x\,\ln \left (2\,x\right )}{3}+x^2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.85, size = 37, normalized size = 1.23 \begin {gather*} \frac {x}{2} + \left (x^{2} + \frac {x \log {\left (2 x \right )}}{3} + 6 x + \frac {9}{2}\right ) \log {\left (\frac {x}{3} + \frac {2}{3} \right )} - \frac {9 \log {\left (x + 2 \right )}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________