Optimal. Leaf size=33 \[ \frac {16 \left (-3+e^x\right )^2 x^2}{\frac {6 x}{5}-\frac {x}{3-e^8 x}} \]
________________________________________________________________________________________
Rubi [B] time = 0.76, antiderivative size = 123, normalized size of antiderivative = 3.73, number of steps used = 21, number of rules used = 8, integrand size = 111, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.072, Rules used = {27, 6742, 683, 2199, 2194, 2176, 2177, 2178} \begin {gather*} -80 e^x x+\frac {40}{3} e^{2 x} x+120 x+80 e^x-\frac {20 e^{2 x}}{3}-\frac {2600 e^{x-8}}{3 \left (13-6 e^8 x\right )}+\frac {1300 e^{2 x-8}}{9 \left (13-6 e^8 x\right )}+\frac {1300}{e^8 \left (13-6 e^8 x\right )}-\frac {20}{9} \left (5-3 e^8\right ) e^{2 x-8}+\frac {40}{3} \left (5-6 e^8\right ) e^{x-8} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 683
Rule 2176
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {28080-18720 e^8 x+4320 e^{16} x^2+e^x \left (-18720-18720 x+e^8 \left (12480 x+14880 x^2\right )+e^{16} \left (-2880 x^2-2880 x^3\right )\right )+e^{2 x} \left (3120+6240 x+e^8 \left (-2080 x-4960 x^2\right )+e^{16} \left (480 x^2+960 x^3\right )\right )}{\left (-13+6 e^8 x\right )^2} \, dx\\ &=\int \left (\frac {720 \left (39-26 e^8 x+6 e^{16} x^2\right )}{\left (-13+6 e^8 x\right )^2}+\frac {480 e^x \left (-39-13 \left (3-2 e^8\right ) x+e^8 \left (31-6 e^8\right ) x^2-6 e^{16} x^3\right )}{\left (13-6 e^8 x\right )^2}+\frac {80 e^{2 x} \left (39+26 \left (3-e^8\right ) x-2 e^8 \left (31-3 e^8\right ) x^2+12 e^{16} x^3\right )}{\left (13-6 e^8 x\right )^2}\right ) \, dx\\ &=80 \int \frac {e^{2 x} \left (39+26 \left (3-e^8\right ) x-2 e^8 \left (31-3 e^8\right ) x^2+12 e^{16} x^3\right )}{\left (13-6 e^8 x\right )^2} \, dx+480 \int \frac {e^x \left (-39-13 \left (3-2 e^8\right ) x+e^8 \left (31-6 e^8\right ) x^2-6 e^{16} x^3\right )}{\left (13-6 e^8 x\right )^2} \, dx+720 \int \frac {39-26 e^8 x+6 e^{16} x^2}{\left (-13+6 e^8 x\right )^2} \, dx\\ &=80 \int \left (\frac {1}{18} e^{-8+2 x} \left (-5+3 e^8\right )+\frac {1}{3} e^{2 x} x+\frac {65 e^{2 x}}{6 \left (-13+6 e^8 x\right )^2}-\frac {65 e^{-8+2 x}}{18 \left (-13+6 e^8 x\right )}\right ) \, dx+480 \int \left (\frac {1}{36} e^{-8+x} \left (5-6 e^8\right )-\frac {e^x x}{6}-\frac {65 e^x}{6 \left (-13+6 e^8 x\right )^2}+\frac {65 e^{-8+x}}{36 \left (-13+6 e^8 x\right )}\right ) \, dx+720 \int \left (\frac {1}{6}+\frac {65}{6 \left (-13+6 e^8 x\right )^2}\right ) \, dx\\ &=120 x+\frac {1300}{e^8 \left (13-6 e^8 x\right )}+\frac {80}{3} \int e^{2 x} x \, dx-80 \int e^x x \, dx-\frac {2600}{9} \int \frac {e^{-8+2 x}}{-13+6 e^8 x} \, dx+\frac {2600}{3} \int \frac {e^{2 x}}{\left (-13+6 e^8 x\right )^2} \, dx+\frac {2600}{3} \int \frac {e^{-8+x}}{-13+6 e^8 x} \, dx-5200 \int \frac {e^x}{\left (-13+6 e^8 x\right )^2} \, dx+\frac {1}{3} \left (40 \left (5-6 e^8\right )\right ) \int e^{-8+x} \, dx-\frac {1}{9} \left (40 \left (5-3 e^8\right )\right ) \int e^{-8+2 x} \, dx\\ &=\frac {40}{3} e^{-8+x} \left (5-6 e^8\right )-\frac {20}{9} e^{-8+2 x} \left (5-3 e^8\right )+120 x-80 e^x x+\frac {40}{3} e^{2 x} x+\frac {1300}{e^8 \left (13-6 e^8 x\right )}-\frac {2600 e^{-8+x}}{3 \left (13-6 e^8 x\right )}+\frac {1300 e^{-8+2 x}}{9 \left (13-6 e^8 x\right )}-\frac {1300}{27} e^{-16+\frac {13}{3 e^8}} \text {Ei}\left (-\frac {13-6 e^8 x}{3 e^8}\right )+\frac {1300}{9} e^{-16+\frac {13}{6 e^8}} \text {Ei}\left (-\frac {13-6 e^8 x}{6 e^8}\right )-\frac {40}{3} \int e^{2 x} \, dx+80 \int e^x \, dx+\frac {2600 \int \frac {e^{2 x}}{-13+6 e^8 x} \, dx}{9 e^8}-\frac {2600 \int \frac {e^x}{-13+6 e^8 x} \, dx}{3 e^8}\\ &=80 e^x-\frac {20 e^{2 x}}{3}+\frac {40}{3} e^{-8+x} \left (5-6 e^8\right )-\frac {20}{9} e^{-8+2 x} \left (5-3 e^8\right )+120 x-80 e^x x+\frac {40}{3} e^{2 x} x+\frac {1300}{e^8 \left (13-6 e^8 x\right )}-\frac {2600 e^{-8+x}}{3 \left (13-6 e^8 x\right )}+\frac {1300 e^{-8+2 x}}{9 \left (13-6 e^8 x\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.09, size = 72, normalized size = 2.18 \begin {gather*} \frac {80 \left (65+78 e^8 x-72 e^{8+x} x+12 e^{8+2 x} x-36 e^{16} x^2+24 e^{16+x} x^2-4 e^{16+2 x} x^2\right )}{52 e^8-24 e^{16} x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.69, size = 62, normalized size = 1.88 \begin {gather*} \frac {20 \, {\left (36 \, x^{2} e^{16} - 78 \, x e^{8} + 4 \, {\left (x^{2} e^{16} - 3 \, x e^{8}\right )} e^{\left (2 \, x\right )} - 24 \, {\left (x^{2} e^{16} - 3 \, x e^{8}\right )} e^{x} - 65\right )}}{6 \, x e^{16} - 13 \, e^{8}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.18, size = 67, normalized size = 2.03 \begin {gather*} \frac {20 \, {\left (36 \, x^{2} e^{40} + 4 \, x^{2} e^{\left (2 \, x + 40\right )} - 24 \, x^{2} e^{\left (x + 40\right )} - 78 \, x e^{32} - 12 \, x e^{\left (2 \, x + 32\right )} + 72 \, x e^{\left (x + 32\right )} - 65 \, e^{24}\right )}}{6 \, x e^{40} - 13 \, e^{32}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.58, size = 59, normalized size = 1.79
method | result | size |
risch | \(120 x -\frac {650 \,{\mathrm e}^{-8}}{3 \left (x \,{\mathrm e}^{8}-\frac {13}{6}\right )}+\frac {80 x \left (x \,{\mathrm e}^{8}-3\right ) {\mathrm e}^{2 x}}{6 x \,{\mathrm e}^{8}-13}-\frac {480 x \left (x \,{\mathrm e}^{8}-3\right ) {\mathrm e}^{x}}{6 x \,{\mathrm e}^{8}-13}\) | \(59\) |
norman | \(\frac {-2160 x -240 x \,{\mathrm e}^{2 x}+720 x^{2} {\mathrm e}^{8}+1440 \,{\mathrm e}^{x} x -480 \,{\mathrm e}^{8} {\mathrm e}^{x} x^{2}+80 \,{\mathrm e}^{8} {\mathrm e}^{2 x} x^{2}}{6 x \,{\mathrm e}^{8}-13}\) | \(62\) |
default | \(\frac {960 x}{6 x \,{\mathrm e}^{8}-13}+\frac {3120 \,{\mathrm e}^{x} {\mathrm e}^{-8}}{6 x \,{\mathrm e}^{8}-13}+520 \left ({\mathrm e}^{-8}\right )^{2} {\mathrm e}^{\frac {13 \,{\mathrm e}^{-8}}{6}} \expIntegralEi \left (1, -x +\frac {13 \,{\mathrm e}^{-8}}{6}\right )-\frac {520 \,{\mathrm e}^{2 x} {\mathrm e}^{-8}}{6 x \,{\mathrm e}^{8}-13}-\frac {520 \left ({\mathrm e}^{-8}\right )^{2} {\mathrm e}^{\frac {13 \,{\mathrm e}^{-8}}{3}} \expIntegralEi \left (1, -2 x +\frac {13 \,{\mathrm e}^{-8}}{3}\right )}{3}-\frac {6760 \,{\mathrm e}^{2 x} {\mathrm e}^{-16}}{3 \left (6 x \,{\mathrm e}^{8}-13\right )}-\frac {520 \left (3 \,{\mathrm e}^{8}+13\right ) {\mathrm e}^{-16} {\mathrm e}^{-8} {\mathrm e}^{\frac {13 \,{\mathrm e}^{-8}}{3}} \expIntegralEi \left (1, -2 x +\frac {13 \,{\mathrm e}^{-8}}{3}\right )}{9}+\frac {-3120 x +720 x^{2} {\mathrm e}^{8}}{6 x \,{\mathrm e}^{8}-13}+\frac {6760 \,{\mathrm e}^{x} {\mathrm e}^{-16}}{6 x \,{\mathrm e}^{8}-13}+\frac {260 \left (6 \,{\mathrm e}^{8}+13\right ) {\mathrm e}^{-16} {\mathrm e}^{-8} {\mathrm e}^{\frac {13 \,{\mathrm e}^{-8}}{6}} \expIntegralEi \left (1, -x +\frac {13 \,{\mathrm e}^{-8}}{6}\right )}{3}-2080 \,{\mathrm e}^{8} \left (-\frac {13 \,{\mathrm e}^{2 x} {\mathrm e}^{-16}}{36 \left (6 x \,{\mathrm e}^{8}-13\right )}-\frac {\left (3 \,{\mathrm e}^{8}+13\right ) {\mathrm e}^{-16} {\mathrm e}^{-8} {\mathrm e}^{\frac {13 \,{\mathrm e}^{-8}}{3}} \expIntegralEi \left (1, -2 x +\frac {13 \,{\mathrm e}^{-8}}{3}\right )}{108}\right )+12480 \,{\mathrm e}^{8} \left (-\frac {13 \,{\mathrm e}^{x} {\mathrm e}^{-16}}{36 \left (6 x \,{\mathrm e}^{8}-13\right )}-\frac {\left (6 \,{\mathrm e}^{8}+13\right ) {\mathrm e}^{-16} {\mathrm e}^{-8} {\mathrm e}^{\frac {13 \,{\mathrm e}^{-8}}{6}} \expIntegralEi \left (1, -x +\frac {13 \,{\mathrm e}^{-8}}{6}\right )}{216}\right )+14880 \,{\mathrm e}^{8} \left (\frac {{\mathrm e}^{x} {\mathrm e}^{-16}}{36}-\frac {169 \,{\mathrm e}^{x} {\mathrm e}^{-24}}{216 \left (6 x \,{\mathrm e}^{8}-13\right )}-\frac {13 \left (12 \,{\mathrm e}^{8}+13\right ) \left ({\mathrm e}^{-8}\right )^{2} {\mathrm e}^{-16} {\mathrm e}^{\frac {13 \,{\mathrm e}^{-8}}{6}} \expIntegralEi \left (1, -x +\frac {13 \,{\mathrm e}^{-8}}{6}\right )}{1296}\right )-4960 \,{\mathrm e}^{8} \left (\frac {{\mathrm e}^{2 x} {\mathrm e}^{-16}}{72}-\frac {169 \,{\mathrm e}^{2 x} {\mathrm e}^{-24}}{216 \left (6 x \,{\mathrm e}^{8}-13\right )}-\frac {13 \left (6 \,{\mathrm e}^{8}+13\right ) \left ({\mathrm e}^{-8}\right )^{2} {\mathrm e}^{-16} {\mathrm e}^{\frac {13 \,{\mathrm e}^{-8}}{3}} \expIntegralEi \left (1, -2 x +\frac {13 \,{\mathrm e}^{-8}}{3}\right )}{648}\right )-2880 \,{\mathrm e}^{16} \left (\frac {{\mathrm e}^{x} {\mathrm e}^{-16}}{36}-\frac {169 \,{\mathrm e}^{x} {\mathrm e}^{-24}}{216 \left (6 x \,{\mathrm e}^{8}-13\right )}-\frac {13 \left (12 \,{\mathrm e}^{8}+13\right ) \left ({\mathrm e}^{-8}\right )^{2} {\mathrm e}^{-16} {\mathrm e}^{\frac {13 \,{\mathrm e}^{-8}}{6}} \expIntegralEi \left (1, -x +\frac {13 \,{\mathrm e}^{-8}}{6}\right )}{1296}\right )-2880 \,{\mathrm e}^{16} \left (\frac {\left (3 x \,{\mathrm e}^{8}+13-3 \,{\mathrm e}^{8}\right ) {\mathrm e}^{x} {\mathrm e}^{-24}}{108}-\frac {2197 \,{\mathrm e}^{x} {\mathrm e}^{-32}}{1296 \left (6 x \,{\mathrm e}^{8}-13\right )}-\frac {169 \left (18 \,{\mathrm e}^{8}+13\right ) \left ({\mathrm e}^{-8}\right )^{2} {\mathrm e}^{-24} {\mathrm e}^{\frac {13 \,{\mathrm e}^{-8}}{6}} \expIntegralEi \left (1, -x +\frac {13 \,{\mathrm e}^{-8}}{6}\right )}{7776}\right )+480 \,{\mathrm e}^{16} \left (\frac {{\mathrm e}^{2 x} {\mathrm e}^{-16}}{72}-\frac {169 \,{\mathrm e}^{2 x} {\mathrm e}^{-24}}{216 \left (6 x \,{\mathrm e}^{8}-13\right )}-\frac {13 \left (6 \,{\mathrm e}^{8}+13\right ) \left ({\mathrm e}^{-8}\right )^{2} {\mathrm e}^{-16} {\mathrm e}^{\frac {13 \,{\mathrm e}^{-8}}{3}} \expIntegralEi \left (1, -2 x +\frac {13 \,{\mathrm e}^{-8}}{3}\right )}{648}\right )+960 \,{\mathrm e}^{16} \left (\frac {\left (6 x \,{\mathrm e}^{8}-3 \,{\mathrm e}^{8}+26\right ) {\mathrm e}^{2 x} {\mathrm e}^{-24}}{432}-\frac {2197 \,{\mathrm e}^{2 x} {\mathrm e}^{-32}}{1296 \left (6 x \,{\mathrm e}^{8}-13\right )}-\frac {169 \left (9 \,{\mathrm e}^{8}+13\right ) \left ({\mathrm e}^{-8}\right )^{2} {\mathrm e}^{-24} {\mathrm e}^{\frac {13 \,{\mathrm e}^{-8}}{3}} \expIntegralEi \left (1, -2 x +\frac {13 \,{\mathrm e}^{-8}}{3}\right )}{3888}\right )\) | \(829\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 20 \, {\left (6 \, x e^{\left (-16\right )} + 26 \, e^{\left (-24\right )} \log \left (6 \, x e^{8} - 13\right ) - \frac {169}{6 \, x e^{32} - 13 \, e^{24}}\right )} e^{16} - 520 \, {\left (e^{\left (-16\right )} \log \left (6 \, x e^{8} - 13\right ) - \frac {13}{6 \, x e^{24} - 13 \, e^{16}}\right )} e^{8} + \frac {3120 \, e^{\left (\frac {13}{6} \, e^{\left (-8\right )} - 8\right )} E_{2}\left (-\frac {1}{6} \, {\left (6 \, x e^{8} - 13\right )} e^{\left (-8\right )}\right )}{6 \, x e^{8} - 13} + \frac {80 \, {\left ({\left (x^{2} e^{8} - 3 \, x\right )} e^{\left (2 \, x\right )} - 6 \, {\left (x^{2} e^{8} - 3 \, x\right )} e^{x}\right )}}{6 \, x e^{8} - 13} - \frac {4680}{6 \, x e^{16} - 13 \, e^{8}} + 18720 \, \int \frac {e^{x}}{36 \, x^{2} e^{16} - 156 \, x e^{8} + 169}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.58, size = 64, normalized size = 1.94 \begin {gather*} 120\,x-\frac {1300\,{\mathrm {e}}^{-8}}{6\,x\,{\mathrm {e}}^8-13}+\frac {{\mathrm {e}}^x\,\left (240\,x\,{\mathrm {e}}^{-8}-80\,x^2\right )}{x-\frac {13\,{\mathrm {e}}^{-8}}{6}}-\frac {{\mathrm {e}}^{2\,x}\,\left (40\,x\,{\mathrm {e}}^{-8}-\frac {40\,x^2}{3}\right )}{x-\frac {13\,{\mathrm {e}}^{-8}}{6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.31, size = 82, normalized size = 2.48 \begin {gather*} 120 x + \frac {\left (- 2880 x^{3} e^{16} + 14880 x^{2} e^{8} - 18720 x\right ) e^{x} + \left (480 x^{3} e^{16} - 2480 x^{2} e^{8} + 3120 x\right ) e^{2 x}}{36 x^{2} e^{16} - 156 x e^{8} + 169} - \frac {1300}{6 x e^{16} - 13 e^{8}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________