Optimal. Leaf size=30 \[ 5+e^{\frac {4 \left (3-e^4\right ) \left (e^{x^2}+\frac {4}{x}+x\right )^2}{x^2}} \]
________________________________________________________________________________________
Rubi [A] time = 4.61, antiderivative size = 28, normalized size of antiderivative = 0.93, number of steps used = 3, number of rules used = 3, integrand size = 178, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.017, Rules used = {6688, 12, 6706} \begin {gather*} e^{\frac {4 \left (3-e^4\right ) \left (x^2+e^{x^2} x+4\right )^2}{x^4}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6688
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8 e^{-\frac {4 \left (-3+e^4\right ) \left (4+e^{x^2} x+x^2\right )^2}{x^4}} \left (3-e^4\right ) \left (-8 \left (4+x^2\right )+e^{2 x^2} x^2 \left (-1+2 x^2\right )+e^{x^2} x \left (-12+7 x^2+2 x^4\right )\right )}{x^5} \, dx\\ &=\left (8 \left (3-e^4\right )\right ) \int \frac {e^{-\frac {4 \left (-3+e^4\right ) \left (4+e^{x^2} x+x^2\right )^2}{x^4}} \left (-8 \left (4+x^2\right )+e^{2 x^2} x^2 \left (-1+2 x^2\right )+e^{x^2} x \left (-12+7 x^2+2 x^4\right )\right )}{x^5} \, dx\\ &=e^{\frac {4 \left (3-e^4\right ) \left (4+e^{x^2} x+x^2\right )^2}{x^4}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.53, size = 26, normalized size = 0.87 \begin {gather*} e^{-\frac {4 \left (-3+e^4\right ) \left (4+e^{x^2} x+x^2\right )^2}{x^4}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.56, size = 78, normalized size = 2.60 \begin {gather*} e^{\left (\frac {4 \, {\left (3 \, x^{4} + 24 \, x^{2} - {\left (x^{4} + 8 \, x^{2} + 16\right )} e^{4} - {\left (x^{2} e^{4} - 3 \, x^{2}\right )} e^{\left (2 \, x^{2}\right )} + 2 \, {\left (3 \, x^{3} - {\left (x^{3} + 4 \, x\right )} e^{4} + 12 \, x\right )} e^{\left (x^{2}\right )} + 48\right )}}{x^{4}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.41, size = 95, normalized size = 3.17 \begin {gather*} e^{\left (-\frac {8 \, e^{\left (x^{2} + 4\right )}}{x} + \frac {24 \, e^{\left (x^{2}\right )}}{x} - \frac {32 \, e^{4}}{x^{2}} + \frac {12 \, e^{\left (2 \, x^{2}\right )}}{x^{2}} - \frac {4 \, e^{\left (2 \, x^{2} + 4\right )}}{x^{2}} + \frac {96}{x^{2}} - \frac {32 \, e^{\left (x^{2} + 4\right )}}{x^{3}} + \frac {96 \, e^{\left (x^{2}\right )}}{x^{3}} - \frac {64 \, e^{4}}{x^{4}} + \frac {192}{x^{4}} - 4 \, e^{4} + 12\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 2.48, size = 47, normalized size = 1.57
method | result | size |
risch | \({\mathrm e}^{-\frac {4 \left (2 x^{3} {\mathrm e}^{x^{2}}+x^{4}+{\mathrm e}^{2 x^{2}} x^{2}+8 \,{\mathrm e}^{x^{2}} x +8 x^{2}+16\right ) \left ({\mathrm e}^{4}-3\right )}{x^{4}}}\) | \(47\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.84, size = 95, normalized size = 3.17 \begin {gather*} e^{\left (-\frac {8 \, e^{\left (x^{2} + 4\right )}}{x} + \frac {24 \, e^{\left (x^{2}\right )}}{x} - \frac {32 \, e^{4}}{x^{2}} + \frac {12 \, e^{\left (2 \, x^{2}\right )}}{x^{2}} - \frac {4 \, e^{\left (2 \, x^{2} + 4\right )}}{x^{2}} + \frac {96}{x^{2}} - \frac {32 \, e^{\left (x^{2} + 4\right )}}{x^{3}} + \frac {96 \, e^{\left (x^{2}\right )}}{x^{3}} - \frac {64 \, e^{4}}{x^{4}} + \frac {192}{x^{4}} - 4 \, e^{4} + 12\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.41, size = 106, normalized size = 3.53 \begin {gather*} {\mathrm {e}}^{-\frac {32\,{\mathrm {e}}^4}{x^2}}\,{\mathrm {e}}^{-\frac {64\,{\mathrm {e}}^4}{x^4}}\,{\mathrm {e}}^{-4\,{\mathrm {e}}^4}\,{\mathrm {e}}^{\frac {12\,{\mathrm {e}}^{2\,x^2}}{x^2}}\,{\mathrm {e}}^{-\frac {8\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^4}{x}}\,{\mathrm {e}}^{-\frac {32\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^4}{x^3}}\,{\mathrm {e}}^{12}\,{\mathrm {e}}^{\frac {96}{x^2}}\,{\mathrm {e}}^{\frac {192}{x^4}}\,{\mathrm {e}}^{-\frac {4\,{\mathrm {e}}^4\,{\mathrm {e}}^{2\,x^2}}{x^2}}\,{\mathrm {e}}^{\frac {24\,{\mathrm {e}}^{x^2}}{x}}\,{\mathrm {e}}^{\frac {96\,{\mathrm {e}}^{x^2}}{x^3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.96, size = 80, normalized size = 2.67 \begin {gather*} e^{\frac {12 x^{4} + 96 x^{2} + \left (- 4 x^{2} e^{4} + 12 x^{2}\right ) e^{2 x^{2}} + \left (24 x^{3} + 96 x + \left (- 8 x^{3} - 32 x\right ) e^{4}\right ) e^{x^{2}} + \left (- 4 x^{4} - 32 x^{2} - 64\right ) e^{4} + 192}{x^{4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________