Optimal. Leaf size=23 \[ \frac {1}{5} x \log \left (4+x+\frac {5}{2 x^2 \left (e^x+x\right )}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 3.03, antiderivative size = 43, normalized size of antiderivative = 1.87, number of steps used = 19, number of rules used = 4, integrand size = 176, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.023, Rules used = {6742, 6688, 43, 2548} \begin {gather*} \frac {1}{5} x \log \left (\frac {2 x^4+8 x^3+2 e^x (x+4) x^2+5}{2 x^2 \left (x+e^x\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 43
Rule 2548
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {(-1+x) x}{5 \left (e^x+x\right )}-\frac {40+35 x+5 x^2-32 x^3+16 x^4+14 x^5+2 x^6}{5 (4+x) \left (5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4\right )}+\frac {x+4 \log \left (\frac {5+8 x^3+2 x^4+2 e^x x^2 (4+x)}{2 x^2 \left (e^x+x\right )}\right )+x \log \left (\frac {5+8 x^3+2 x^4+2 e^x x^2 (4+x)}{2 x^2 \left (e^x+x\right )}\right )}{5 (4+x)}\right ) \, dx\\ &=\frac {1}{5} \int \frac {(-1+x) x}{e^x+x} \, dx-\frac {1}{5} \int \frac {40+35 x+5 x^2-32 x^3+16 x^4+14 x^5+2 x^6}{(4+x) \left (5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4\right )} \, dx+\frac {1}{5} \int \frac {x+4 \log \left (\frac {5+8 x^3+2 x^4+2 e^x x^2 (4+x)}{2 x^2 \left (e^x+x\right )}\right )+x \log \left (\frac {5+8 x^3+2 x^4+2 e^x x^2 (4+x)}{2 x^2 \left (e^x+x\right )}\right )}{4+x} \, dx\\ &=\frac {1}{5} \int \left (-\frac {x}{e^x+x}+\frac {x^2}{e^x+x}\right ) \, dx-\frac {1}{5} \int \left (\frac {15}{5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4}+\frac {5 x}{5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4}-\frac {8 x^3}{5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4}+\frac {6 x^4}{5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4}+\frac {2 x^5}{5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4}-\frac {20}{(4+x) \left (5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4\right )}\right ) \, dx+\frac {1}{5} \int \left (\frac {x}{4+x}+\log \left (\frac {5+8 x^3+2 x^4+2 e^x x^2 (4+x)}{2 x^2 \left (e^x+x\right )}\right )\right ) \, dx\\ &=\frac {1}{5} \int \frac {x}{4+x} \, dx-\frac {1}{5} \int \frac {x}{e^x+x} \, dx+\frac {1}{5} \int \frac {x^2}{e^x+x} \, dx+\frac {1}{5} \int \log \left (\frac {5+8 x^3+2 x^4+2 e^x x^2 (4+x)}{2 x^2 \left (e^x+x\right )}\right ) \, dx-\frac {2}{5} \int \frac {x^5}{5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4} \, dx-\frac {6}{5} \int \frac {x^4}{5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4} \, dx+\frac {8}{5} \int \frac {x^3}{5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4} \, dx-3 \int \frac {1}{5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4} \, dx+4 \int \frac {1}{(4+x) \left (5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4\right )} \, dx-\int \frac {x}{5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4} \, dx\\ &=\frac {1}{5} x \log \left (\frac {5+8 x^3+2 x^4+2 e^x x^2 (4+x)}{2 x^2 \left (e^x+x\right )}\right )-\frac {1}{5} \int \frac {x}{e^x+x} \, dx+\frac {1}{5} \int \frac {x^2}{e^x+x} \, dx+\frac {1}{5} \int \left (1-\frac {4}{4+x}\right ) \, dx-\frac {1}{5} \int \frac {2 e^{2 x} x^3+x \left (-15+2 x^4\right )+e^x \left (-10-5 x+4 x^4\right )}{\left (e^x+x\right ) \left (5+8 x^3+2 x^4+2 e^x x^2 (4+x)\right )} \, dx-\frac {2}{5} \int \frac {x^5}{5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4} \, dx-\frac {6}{5} \int \frac {x^4}{5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4} \, dx+\frac {8}{5} \int \frac {x^3}{5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4} \, dx-3 \int \frac {1}{5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4} \, dx+4 \int \frac {1}{(4+x) \left (5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4\right )} \, dx-\int \frac {x}{5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4} \, dx\\ &=\frac {x}{5}-\frac {4}{5} \log (4+x)+\frac {1}{5} x \log \left (\frac {5+8 x^3+2 x^4+2 e^x x^2 (4+x)}{2 x^2 \left (e^x+x\right )}\right )-\frac {1}{5} \int \frac {x}{e^x+x} \, dx+\frac {1}{5} \int \frac {x^2}{e^x+x} \, dx-\frac {1}{5} \int \left (\frac {x}{4+x}+\frac {(-1+x) x}{e^x+x}-\frac {40+35 x+5 x^2-32 x^3+16 x^4+14 x^5+2 x^6}{(4+x) \left (5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4\right )}\right ) \, dx-\frac {2}{5} \int \frac {x^5}{5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4} \, dx-\frac {6}{5} \int \frac {x^4}{5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4} \, dx+\frac {8}{5} \int \frac {x^3}{5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4} \, dx-3 \int \frac {1}{5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4} \, dx+4 \int \frac {1}{(4+x) \left (5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4\right )} \, dx-\int \frac {x}{5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4} \, dx\\ &=\frac {x}{5}-\frac {4}{5} \log (4+x)+\frac {1}{5} x \log \left (\frac {5+8 x^3+2 x^4+2 e^x x^2 (4+x)}{2 x^2 \left (e^x+x\right )}\right )-\frac {1}{5} \int \frac {x}{4+x} \, dx-\frac {1}{5} \int \frac {x}{e^x+x} \, dx-\frac {1}{5} \int \frac {(-1+x) x}{e^x+x} \, dx+\frac {1}{5} \int \frac {x^2}{e^x+x} \, dx+\frac {1}{5} \int \frac {40+35 x+5 x^2-32 x^3+16 x^4+14 x^5+2 x^6}{(4+x) \left (5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4\right )} \, dx-\frac {2}{5} \int \frac {x^5}{5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4} \, dx-\frac {6}{5} \int \frac {x^4}{5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4} \, dx+\frac {8}{5} \int \frac {x^3}{5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4} \, dx-3 \int \frac {1}{5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4} \, dx+4 \int \frac {1}{(4+x) \left (5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4\right )} \, dx-\int \frac {x}{5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4} \, dx\\ &=\frac {x}{5}-\frac {4}{5} \log (4+x)+\frac {1}{5} x \log \left (\frac {5+8 x^3+2 x^4+2 e^x x^2 (4+x)}{2 x^2 \left (e^x+x\right )}\right )-\frac {1}{5} \int \frac {x}{e^x+x} \, dx+\frac {1}{5} \int \frac {x^2}{e^x+x} \, dx-\frac {1}{5} \int \left (1-\frac {4}{4+x}\right ) \, dx-\frac {1}{5} \int \left (-\frac {x}{e^x+x}+\frac {x^2}{e^x+x}\right ) \, dx+\frac {1}{5} \int \left (\frac {15}{5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4}+\frac {5 x}{5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4}-\frac {8 x^3}{5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4}+\frac {6 x^4}{5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4}+\frac {2 x^5}{5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4}-\frac {20}{(4+x) \left (5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4\right )}\right ) \, dx-\frac {2}{5} \int \frac {x^5}{5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4} \, dx-\frac {6}{5} \int \frac {x^4}{5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4} \, dx+\frac {8}{5} \int \frac {x^3}{5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4} \, dx-3 \int \frac {1}{5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4} \, dx+4 \int \frac {1}{(4+x) \left (5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4\right )} \, dx-\int \frac {x}{5+8 e^x x^2+8 x^3+2 e^x x^3+2 x^4} \, dx\\ &=\frac {1}{5} x \log \left (\frac {5+8 x^3+2 x^4+2 e^x x^2 (4+x)}{2 x^2 \left (e^x+x\right )}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.85, size = 43, normalized size = 1.87 \begin {gather*} \frac {1}{5} x \log \left (\frac {5+8 x^3+2 x^4+2 e^x x^2 (4+x)}{2 x^2 \left (e^x+x\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.56, size = 43, normalized size = 1.87 \begin {gather*} \frac {1}{5} \, x \log \left (\frac {2 \, x^{4} + 8 \, x^{3} + 2 \, {\left (x^{3} + 4 \, x^{2}\right )} e^{x} + 5}{2 \, {\left (x^{3} + x^{2} e^{x}\right )}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.49, size = 44, normalized size = 1.91 \begin {gather*} \frac {1}{5} \, x \log \left (\frac {2 \, x^{4} + 2 \, x^{3} e^{x} + 8 \, x^{3} + 8 \, x^{2} e^{x} + 5}{2 \, {\left (x^{3} + x^{2} e^{x}\right )}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.26, size = 537, normalized size = 23.35
method | result | size |
risch | \(\frac {x \ln \left (\frac {5}{2}+x^{4}+\left ({\mathrm e}^{x}+4\right ) x^{3}+4 \,{\mathrm e}^{x} x^{2}\right )}{5}-\frac {x \ln \left ({\mathrm e}^{x}+x \right )}{5}-\frac {2 x \ln \relax (x )}{5}+\frac {i \pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )}{10}-\frac {i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}}{5}+\frac {i \pi x \mathrm {csgn}\left (i x^{2}\right )^{3}}{10}-\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{{\mathrm e}^{x}+x}\right ) \mathrm {csgn}\left (i \left (\frac {5}{2}+x^{4}+\left ({\mathrm e}^{x}+4\right ) x^{3}+4 \,{\mathrm e}^{x} x^{2}\right )\right ) \mathrm {csgn}\left (\frac {i \left (\frac {5}{2}+x^{4}+\left ({\mathrm e}^{x}+4\right ) x^{3}+4 \,{\mathrm e}^{x} x^{2}\right )}{{\mathrm e}^{x}+x}\right )}{10}+\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{{\mathrm e}^{x}+x}\right ) \mathrm {csgn}\left (\frac {i \left (\frac {5}{2}+x^{4}+\left ({\mathrm e}^{x}+4\right ) x^{3}+4 \,{\mathrm e}^{x} x^{2}\right )}{{\mathrm e}^{x}+x}\right )^{2}}{10}+\frac {i \pi x \,\mathrm {csgn}\left (i \left (\frac {5}{2}+x^{4}+\left ({\mathrm e}^{x}+4\right ) x^{3}+4 \,{\mathrm e}^{x} x^{2}\right )\right ) \mathrm {csgn}\left (\frac {i \left (\frac {5}{2}+x^{4}+\left ({\mathrm e}^{x}+4\right ) x^{3}+4 \,{\mathrm e}^{x} x^{2}\right )}{{\mathrm e}^{x}+x}\right )^{2}}{10}-\frac {i \pi x \mathrm {csgn}\left (\frac {i \left (\frac {5}{2}+x^{4}+\left ({\mathrm e}^{x}+4\right ) x^{3}+4 \,{\mathrm e}^{x} x^{2}\right )}{{\mathrm e}^{x}+x}\right )^{3}}{10}+\frac {i \pi x \,\mathrm {csgn}\left (\frac {i \left (\frac {5}{2}+x^{4}+\left ({\mathrm e}^{x}+4\right ) x^{3}+4 \,{\mathrm e}^{x} x^{2}\right )}{{\mathrm e}^{x}+x}\right ) \mathrm {csgn}\left (\frac {i \left (\frac {5}{2}+x^{4}+\left ({\mathrm e}^{x}+4\right ) x^{3}+4 \,{\mathrm e}^{x} x^{2}\right )}{x^{2} \left ({\mathrm e}^{x}+x \right )}\right )^{2}}{10}-\frac {i \pi x \,\mathrm {csgn}\left (\frac {i \left (\frac {5}{2}+x^{4}+\left ({\mathrm e}^{x}+4\right ) x^{3}+4 \,{\mathrm e}^{x} x^{2}\right )}{{\mathrm e}^{x}+x}\right ) \mathrm {csgn}\left (\frac {i \left (\frac {5}{2}+x^{4}+\left ({\mathrm e}^{x}+4\right ) x^{3}+4 \,{\mathrm e}^{x} x^{2}\right )}{x^{2} \left ({\mathrm e}^{x}+x \right )}\right ) \mathrm {csgn}\left (\frac {i}{x^{2}}\right )}{10}-\frac {i \pi x \mathrm {csgn}\left (\frac {i \left (\frac {5}{2}+x^{4}+\left ({\mathrm e}^{x}+4\right ) x^{3}+4 \,{\mathrm e}^{x} x^{2}\right )}{x^{2} \left ({\mathrm e}^{x}+x \right )}\right )^{3}}{10}+\frac {i \pi x \mathrm {csgn}\left (\frac {i \left (\frac {5}{2}+x^{4}+\left ({\mathrm e}^{x}+4\right ) x^{3}+4 \,{\mathrm e}^{x} x^{2}\right )}{x^{2} \left ({\mathrm e}^{x}+x \right )}\right )^{2} \mathrm {csgn}\left (\frac {i}{x^{2}}\right )}{10}\) | \(537\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.54, size = 48, normalized size = 2.09 \begin {gather*} -\frac {1}{5} \, x \log \relax (2) + \frac {1}{5} \, x \log \left (2 \, x^{4} + 8 \, x^{3} + 2 \, {\left (x^{3} + 4 \, x^{2}\right )} e^{x} + 5\right ) - \frac {1}{5} \, x \log \left (x + e^{x}\right ) - \frac {2}{5} \, x \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.52, size = 46, normalized size = 2.00 \begin {gather*} \frac {x\,\ln \left (\frac {{\mathrm {e}}^x\,\left (2\,x^3+8\,x^2\right )+8\,x^3+2\,x^4+5}{2\,x^2\,{\mathrm {e}}^x+2\,x^3}\right )}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.77, size = 42, normalized size = 1.83 \begin {gather*} \frac {x \log {\left (\frac {2 x^{4} + 8 x^{3} + \left (2 x^{3} + 8 x^{2}\right ) e^{x} + 5}{2 x^{3} + 2 x^{2} e^{x}} \right )}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________