Optimal. Leaf size=23 \[ 8 x+\frac {\log \left ((-3+x)^2\right )}{(-3+x)^2 x^2 \log ^2(x)} \]
________________________________________________________________________________________
Rubi [F] time = 1.57, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2 x \log (x)+\left (-216 x^3+216 x^4-72 x^5+8 x^6\right ) \log ^3(x)+(6-2 x+(6-4 x) \log (x)) \log \left (9-6 x+x^2\right )}{\left (-27 x^3+27 x^4-9 x^5+x^6\right ) \log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (8+\frac {2}{(-3+x)^3 x^2 \log ^2(x)}-\frac {2 \log \left ((-3+x)^2\right ) (-3+x+(-3+2 x) \log (x))}{(-3+x)^3 x^3 \log ^3(x)}\right ) \, dx\\ &=8 x+2 \int \frac {1}{(-3+x)^3 x^2 \log ^2(x)} \, dx-2 \int \frac {\log \left ((-3+x)^2\right ) (-3+x+(-3+2 x) \log (x))}{(-3+x)^3 x^3 \log ^3(x)} \, dx\\ &=8 x-2 \int \left (\frac {\log \left ((-3+x)^2\right )}{(-3+x)^2 x^3 \log ^3(x)}+\frac {(-3+2 x) \log \left ((-3+x)^2\right )}{(-3+x)^3 x^3 \log ^2(x)}\right ) \, dx+2 \int \frac {1}{(-3+x)^3 x^2 \log ^2(x)} \, dx\\ &=8 x-2 \int \frac {\log \left ((-3+x)^2\right )}{(-3+x)^2 x^3 \log ^3(x)} \, dx+2 \int \frac {1}{(-3+x)^3 x^2 \log ^2(x)} \, dx-2 \int \frac {(-3+2 x) \log \left ((-3+x)^2\right )}{(-3+x)^3 x^3 \log ^2(x)} \, dx\\ &=8 x-2 \int \left (\frac {\log \left ((-3+x)^2\right )}{27 (-3+x)^2 \log ^3(x)}-\frac {\log \left ((-3+x)^2\right )}{27 (-3+x) \log ^3(x)}+\frac {\log \left ((-3+x)^2\right )}{9 x^3 \log ^3(x)}+\frac {2 \log \left ((-3+x)^2\right )}{27 x^2 \log ^3(x)}+\frac {\log \left ((-3+x)^2\right )}{27 x \log ^3(x)}\right ) \, dx-2 \int \left (\frac {\log \left ((-3+x)^2\right )}{9 (-3+x)^3 \log ^2(x)}-\frac {\log \left ((-3+x)^2\right )}{27 (-3+x)^2 \log ^2(x)}+\frac {\log \left ((-3+x)^2\right )}{9 x^3 \log ^2(x)}+\frac {\log \left ((-3+x)^2\right )}{27 x^2 \log ^2(x)}\right ) \, dx+2 \int \frac {1}{(-3+x)^3 x^2 \log ^2(x)} \, dx\\ &=8 x-\frac {2}{27} \int \frac {\log \left ((-3+x)^2\right )}{(-3+x)^2 \log ^3(x)} \, dx+\frac {2}{27} \int \frac {\log \left ((-3+x)^2\right )}{(-3+x) \log ^3(x)} \, dx-\frac {2}{27} \int \frac {\log \left ((-3+x)^2\right )}{x \log ^3(x)} \, dx+\frac {2}{27} \int \frac {\log \left ((-3+x)^2\right )}{(-3+x)^2 \log ^2(x)} \, dx-\frac {2}{27} \int \frac {\log \left ((-3+x)^2\right )}{x^2 \log ^2(x)} \, dx-\frac {4}{27} \int \frac {\log \left ((-3+x)^2\right )}{x^2 \log ^3(x)} \, dx-\frac {2}{9} \int \frac {\log \left ((-3+x)^2\right )}{x^3 \log ^3(x)} \, dx-\frac {2}{9} \int \frac {\log \left ((-3+x)^2\right )}{(-3+x)^3 \log ^2(x)} \, dx-\frac {2}{9} \int \frac {\log \left ((-3+x)^2\right )}{x^3 \log ^2(x)} \, dx+2 \int \frac {1}{(-3+x)^3 x^2 \log ^2(x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.15, size = 23, normalized size = 1.00 \begin {gather*} 8 x+\frac {\log \left ((-3+x)^2\right )}{(-3+x)^2 x^2 \log ^2(x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.77, size = 51, normalized size = 2.22 \begin {gather*} \frac {8 \, {\left (x^{5} - 6 \, x^{4} + 9 \, x^{3}\right )} \log \relax (x)^{2} + \log \left (x^{2} - 6 \, x + 9\right )}{{\left (x^{4} - 6 \, x^{3} + 9 \, x^{2}\right )} \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 43, normalized size = 1.87 \begin {gather*} 8 \, x + \frac {\log \left (x^{2} - 6 \, x + 9\right )}{x^{4} \log \relax (x)^{2} - 6 \, x^{3} \log \relax (x)^{2} + 9 \, x^{2} \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.11, size = 121, normalized size = 5.26
method | result | size |
risch | \(\frac {2 \ln \left (x -3\right )}{\left (x -3\right )^{2} x^{2} \ln \relax (x )^{2}}+\frac {16 x^{5} \ln \relax (x )^{2}-96 x^{4} \ln \relax (x )^{2}-i \pi \mathrm {csgn}\left (i \left (x -3\right )\right )^{2} \mathrm {csgn}\left (i \left (x -3\right )^{2}\right )+2 i \pi \,\mathrm {csgn}\left (i \left (x -3\right )\right ) \mathrm {csgn}\left (i \left (x -3\right )^{2}\right )^{2}-i \pi \mathrm {csgn}\left (i \left (x -3\right )^{2}\right )^{3}+144 x^{3} \ln \relax (x )^{2}}{2 \left (x -3\right )^{2} x^{2} \ln \relax (x )^{2}}\) | \(121\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.43, size = 47, normalized size = 2.04 \begin {gather*} \frac {2 \, {\left (4 \, {\left (x^{5} - 6 \, x^{4} + 9 \, x^{3}\right )} \log \relax (x)^{2} + \log \left (x - 3\right )\right )}}{{\left (x^{4} - 6 \, x^{3} + 9 \, x^{2}\right )} \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.21, size = 26, normalized size = 1.13 \begin {gather*} 8\,x+\frac {\ln \left (x^2-6\,x+9\right )}{x^2\,{\ln \relax (x)}^2\,{\left (x-3\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.44, size = 41, normalized size = 1.78 \begin {gather*} 8 x + \frac {\log {\left (x^{2} - 6 x + 9 \right )}}{x^{4} \log {\relax (x )}^{2} - 6 x^{3} \log {\relax (x )}^{2} + 9 x^{2} \log {\relax (x )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________