Optimal. Leaf size=22 \[ -5+4 \left (3+x \left (5+3 e^{e^x-x}+x\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.36, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {3}{4} e^{e^x-x} \left (16-16 x+16 e^x x+\frac {4}{3} e^{-e^x+x} (20+8 x)\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {3}{4} \int e^{e^x-x} \left (16-16 x+16 e^x x+\frac {4}{3} e^{-e^x+x} (20+8 x)\right ) \, dx\\ &=\frac {3}{4} \int \left (16 e^{e^x-x}+16 e^{e^x} x-16 e^{e^x-x} x+\frac {16}{3} (5+2 x)\right ) \, dx\\ &=(5+2 x)^2+12 \int e^{e^x-x} \, dx+12 \int e^{e^x} x \, dx-12 \int e^{e^x-x} x \, dx\\ &=(5+2 x)^2+12 \int e^{e^x} x \, dx-12 \int e^{e^x-x} x \, dx+12 \operatorname {Subst}\left (\int \frac {e^x}{x^2} \, dx,x,e^x\right )\\ &=-12 e^{e^x-x}+(5+2 x)^2+12 \int e^{e^x} x \, dx-12 \int e^{e^x-x} x \, dx+12 \operatorname {Subst}\left (\int \frac {e^x}{x} \, dx,x,e^x\right )\\ &=-12 e^{e^x-x}+(5+2 x)^2+12 \text {Ei}\left (e^x\right )+12 \int e^{e^x} x \, dx-12 \int e^{e^x-x} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 17, normalized size = 0.77 \begin {gather*} 4 x \left (5+3 e^{e^x-x}+x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 21, normalized size = 0.95 \begin {gather*} 4 \, x^{2} + 16 \, x e^{\left (-x + e^{x} + \log \left (\frac {3}{4}\right )\right )} + 20 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 19, normalized size = 0.86 \begin {gather*} 4 \, x^{2} + 12 \, x e^{\left (-x + e^{x}\right )} + 20 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.17, size = 38, normalized size = 1.73
method | result | size |
norman | \(\left (12 x \,{\mathrm e}^{2 \,{\mathrm e}^{x}}+20 x \,{\mathrm e}^{x} {\mathrm e}^{{\mathrm e}^{x}}+4 x^{2} {\mathrm e}^{x} {\mathrm e}^{{\mathrm e}^{x}}\right ) {\mathrm e}^{-x} {\mathrm e}^{-{\mathrm e}^{x}}\) | \(38\) |
default | \(\frac {3 \left (16 x +4 x^{2} {\mathrm e}^{-\ln \left (\frac {3 \,{\mathrm e}^{{\mathrm e}^{x}}}{4}\right )+x}+20 \,{\mathrm e}^{-\ln \left (\frac {3 \,{\mathrm e}^{{\mathrm e}^{x}}}{4}\right )+x} x \right ) {\mathrm e}^{{\mathrm e}^{x}-x}}{4}\) | \(49\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 19, normalized size = 0.86 \begin {gather*} 4 \, x^{2} + 12 \, x e^{\left (-x + e^{x}\right )} + 20 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.11, size = 15, normalized size = 0.68 \begin {gather*} 4\,x\,\left (x+3\,{\mathrm {e}}^{{\mathrm {e}}^x-x}+5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 19, normalized size = 0.86 \begin {gather*} 4 x^{2} + 20 x + 12 x e^{- x} e^{e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________