Optimal. Leaf size=33 \[ \frac {e^{-e^{e^5 x}+x}-x+x^2 \log (5)}{\log ((-1+x) \log (x))} \]
________________________________________________________________________________________
Rubi [F] time = 10.39, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-x+x^2+\left (x^2-x^3\right ) \log (5)+\left (x^2-x^3 \log (5)\right ) \log (x)+e^{-e^{e^5 x}+x} (1-x-x \log (x))+\left (e^{-e^{e^5 x}+x} \left (-x+x^2+e^{5+e^5 x} \left (x-x^2\right )\right ) \log (x)+\left (x-x^2+\left (-2 x^2+2 x^3\right ) \log (5)\right ) \log (x)\right ) \log ((-1+x) \log (x))}{\left (-x+x^2\right ) \log (x) \log ^2((-1+x) \log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-x+x^2+\left (x^2-x^3\right ) \log (5)+\left (x^2-x^3 \log (5)\right ) \log (x)+e^{-e^{e^5 x}+x} (1-x-x \log (x))+\left (e^{-e^{e^5 x}+x} \left (-x+x^2+e^{5+e^5 x} \left (x-x^2\right )\right ) \log (x)+\left (x-x^2+\left (-2 x^2+2 x^3\right ) \log (5)\right ) \log (x)\right ) \log ((-1+x) \log (x))}{(-1+x) x \log (x) \log ^2((-1+x) \log (x))} \, dx\\ &=\int \left (-\frac {x (-1+x \log (5))}{(-1+x) \log ^2((-1+x) \log (x))}-\frac {1}{(-1+x) \log (x) \log ^2((-1+x) \log (x))}+\frac {x}{(-1+x) \log (x) \log ^2((-1+x) \log (x))}-\frac {x \log (5)}{\log (x) \log ^2((-1+x) \log (x))}-\frac {e^{-e^{e^5 x}+x} (-1+x+x \log (x))}{(-1+x) x \log (x) \log ^2((-1+x) \log (x))}-\frac {e^{5-e^{e^5 x}+\left (1+e^5\right ) x}}{\log ((-1+x) \log (x))}-\frac {e^{-e^{e^5 x}+x}}{(-1+x) \log ((-1+x) \log (x))}+\frac {e^{-e^{e^5 x}+x} x}{(-1+x) \log ((-1+x) \log (x))}+\frac {-1+x \log (25)}{\log ((-1+x) \log (x))}\right ) \, dx\\ &=-\left (\log (5) \int \frac {x}{\log (x) \log ^2((-1+x) \log (x))} \, dx\right )-\int \frac {x (-1+x \log (5))}{(-1+x) \log ^2((-1+x) \log (x))} \, dx-\int \frac {1}{(-1+x) \log (x) \log ^2((-1+x) \log (x))} \, dx+\int \frac {x}{(-1+x) \log (x) \log ^2((-1+x) \log (x))} \, dx-\int \frac {e^{-e^{e^5 x}+x} (-1+x+x \log (x))}{(-1+x) x \log (x) \log ^2((-1+x) \log (x))} \, dx-\int \frac {e^{5-e^{e^5 x}+\left (1+e^5\right ) x}}{\log ((-1+x) \log (x))} \, dx-\int \frac {e^{-e^{e^5 x}+x}}{(-1+x) \log ((-1+x) \log (x))} \, dx+\int \frac {e^{-e^{e^5 x}+x} x}{(-1+x) \log ((-1+x) \log (x))} \, dx+\int \frac {-1+x \log (25)}{\log ((-1+x) \log (x))} \, dx\\ &=-\left (\log (5) \int \frac {x}{\log (x) \log ^2((-1+x) \log (x))} \, dx\right )-\int \left (-\frac {1-\log (5)}{\log ^2((-1+x) \log (x))}+\frac {-1+\log (5)}{(-1+x) \log ^2((-1+x) \log (x))}+\frac {x \log (5)}{\log ^2((-1+x) \log (x))}\right ) \, dx+\int \left (\frac {1}{\log (x) \log ^2((-1+x) \log (x))}+\frac {1}{(-1+x) \log (x) \log ^2((-1+x) \log (x))}\right ) \, dx-\int \left (\frac {e^{-e^{e^5 x}+x} (1-x-x \log (x))}{x \log (x) \log ^2((-1+x) \log (x))}+\frac {e^{-e^{e^5 x}+x} (-1+x+x \log (x))}{(-1+x) \log (x) \log ^2((-1+x) \log (x))}\right ) \, dx+\int \left (\frac {e^{-e^{e^5 x}+x}}{\log ((-1+x) \log (x))}+\frac {e^{-e^{e^5 x}+x}}{(-1+x) \log ((-1+x) \log (x))}\right ) \, dx+\int \left (-\frac {1}{\log ((-1+x) \log (x))}+\frac {x \log (25)}{\log ((-1+x) \log (x))}\right ) \, dx-\int \frac {1}{(-1+x) \log (x) \log ^2((-1+x) \log (x))} \, dx-\int \frac {e^{5-e^{e^5 x}+\left (1+e^5\right ) x}}{\log ((-1+x) \log (x))} \, dx-\int \frac {e^{-e^{e^5 x}+x}}{(-1+x) \log ((-1+x) \log (x))} \, dx\\ &=-\left ((-1+\log (5)) \int \frac {1}{\log ^2((-1+x) \log (x))} \, dx\right )-(-1+\log (5)) \int \frac {1}{(-1+x) \log ^2((-1+x) \log (x))} \, dx-\log (5) \int \frac {x}{\log ^2((-1+x) \log (x))} \, dx-\log (5) \int \frac {x}{\log (x) \log ^2((-1+x) \log (x))} \, dx+\log (25) \int \frac {x}{\log ((-1+x) \log (x))} \, dx+\int \frac {1}{\log (x) \log ^2((-1+x) \log (x))} \, dx-\int \frac {e^{-e^{e^5 x}+x} (1-x-x \log (x))}{x \log (x) \log ^2((-1+x) \log (x))} \, dx-\int \frac {e^{-e^{e^5 x}+x} (-1+x+x \log (x))}{(-1+x) \log (x) \log ^2((-1+x) \log (x))} \, dx-\int \frac {1}{\log ((-1+x) \log (x))} \, dx+\int \frac {e^{-e^{e^5 x}+x}}{\log ((-1+x) \log (x))} \, dx-\int \frac {e^{5-e^{e^5 x}+\left (1+e^5\right ) x}}{\log ((-1+x) \log (x))} \, dx\\ &=-\left ((-1+\log (5)) \int \frac {1}{\log ^2((-1+x) \log (x))} \, dx\right )-(-1+\log (5)) \int \frac {1}{(-1+x) \log ^2((-1+x) \log (x))} \, dx-\log (5) \int \frac {x}{\log ^2((-1+x) \log (x))} \, dx-\log (5) \int \frac {x}{\log (x) \log ^2((-1+x) \log (x))} \, dx+\log (25) \int \frac {x}{\log ((-1+x) \log (x))} \, dx-\int \left (-\frac {e^{-e^{e^5 x}+x}}{\log ^2((-1+x) \log (x))}-\frac {e^{-e^{e^5 x}+x}}{\log (x) \log ^2((-1+x) \log (x))}+\frac {e^{-e^{e^5 x}+x}}{x \log (x) \log ^2((-1+x) \log (x))}\right ) \, dx-\int \left (\frac {e^{-e^{e^5 x}+x} x}{(-1+x) \log ^2((-1+x) \log (x))}-\frac {e^{-e^{e^5 x}+x}}{(-1+x) \log (x) \log ^2((-1+x) \log (x))}+\frac {e^{-e^{e^5 x}+x} x}{(-1+x) \log (x) \log ^2((-1+x) \log (x))}\right ) \, dx+\int \frac {1}{\log (x) \log ^2((-1+x) \log (x))} \, dx-\int \frac {1}{\log ((-1+x) \log (x))} \, dx+\int \frac {e^{-e^{e^5 x}+x}}{\log ((-1+x) \log (x))} \, dx-\int \frac {e^{5-e^{e^5 x}+\left (1+e^5\right ) x}}{\log ((-1+x) \log (x))} \, dx\\ &=-\left ((-1+\log (5)) \int \frac {1}{\log ^2((-1+x) \log (x))} \, dx\right )-(-1+\log (5)) \int \frac {1}{(-1+x) \log ^2((-1+x) \log (x))} \, dx-\log (5) \int \frac {x}{\log ^2((-1+x) \log (x))} \, dx-\log (5) \int \frac {x}{\log (x) \log ^2((-1+x) \log (x))} \, dx+\log (25) \int \frac {x}{\log ((-1+x) \log (x))} \, dx+\int \frac {e^{-e^{e^5 x}+x}}{\log ^2((-1+x) \log (x))} \, dx-\int \frac {e^{-e^{e^5 x}+x} x}{(-1+x) \log ^2((-1+x) \log (x))} \, dx+\int \frac {1}{\log (x) \log ^2((-1+x) \log (x))} \, dx+\int \frac {e^{-e^{e^5 x}+x}}{\log (x) \log ^2((-1+x) \log (x))} \, dx+\int \frac {e^{-e^{e^5 x}+x}}{(-1+x) \log (x) \log ^2((-1+x) \log (x))} \, dx-\int \frac {e^{-e^{e^5 x}+x}}{x \log (x) \log ^2((-1+x) \log (x))} \, dx-\int \frac {e^{-e^{e^5 x}+x} x}{(-1+x) \log (x) \log ^2((-1+x) \log (x))} \, dx-\int \frac {1}{\log ((-1+x) \log (x))} \, dx+\int \frac {e^{-e^{e^5 x}+x}}{\log ((-1+x) \log (x))} \, dx-\int \frac {e^{5-e^{e^5 x}+\left (1+e^5\right ) x}}{\log ((-1+x) \log (x))} \, dx\\ &=-\left ((-1+\log (5)) \int \frac {1}{\log ^2((-1+x) \log (x))} \, dx\right )-(-1+\log (5)) \int \frac {1}{(-1+x) \log ^2((-1+x) \log (x))} \, dx-\log (5) \int \frac {x}{\log ^2((-1+x) \log (x))} \, dx-\log (5) \int \frac {x}{\log (x) \log ^2((-1+x) \log (x))} \, dx+\log (25) \int \frac {x}{\log ((-1+x) \log (x))} \, dx-\int \left (\frac {e^{-e^{e^5 x}+x}}{\log ^2((-1+x) \log (x))}+\frac {e^{-e^{e^5 x}+x}}{(-1+x) \log ^2((-1+x) \log (x))}\right ) \, dx-\int \left (\frac {e^{-e^{e^5 x}+x}}{\log (x) \log ^2((-1+x) \log (x))}+\frac {e^{-e^{e^5 x}+x}}{(-1+x) \log (x) \log ^2((-1+x) \log (x))}\right ) \, dx+\int \frac {e^{-e^{e^5 x}+x}}{\log ^2((-1+x) \log (x))} \, dx+\int \frac {1}{\log (x) \log ^2((-1+x) \log (x))} \, dx+\int \frac {e^{-e^{e^5 x}+x}}{\log (x) \log ^2((-1+x) \log (x))} \, dx+\int \frac {e^{-e^{e^5 x}+x}}{(-1+x) \log (x) \log ^2((-1+x) \log (x))} \, dx-\int \frac {e^{-e^{e^5 x}+x}}{x \log (x) \log ^2((-1+x) \log (x))} \, dx-\int \frac {1}{\log ((-1+x) \log (x))} \, dx+\int \frac {e^{-e^{e^5 x}+x}}{\log ((-1+x) \log (x))} \, dx-\int \frac {e^{5-e^{e^5 x}+\left (1+e^5\right ) x}}{\log ((-1+x) \log (x))} \, dx\\ &=-\left ((-1+\log (5)) \int \frac {1}{\log ^2((-1+x) \log (x))} \, dx\right )-(-1+\log (5)) \int \frac {1}{(-1+x) \log ^2((-1+x) \log (x))} \, dx-\log (5) \int \frac {x}{\log ^2((-1+x) \log (x))} \, dx-\log (5) \int \frac {x}{\log (x) \log ^2((-1+x) \log (x))} \, dx+\log (25) \int \frac {x}{\log ((-1+x) \log (x))} \, dx-\int \frac {e^{-e^{e^5 x}+x}}{(-1+x) \log ^2((-1+x) \log (x))} \, dx+\int \frac {1}{\log (x) \log ^2((-1+x) \log (x))} \, dx-\int \frac {e^{-e^{e^5 x}+x}}{x \log (x) \log ^2((-1+x) \log (x))} \, dx-\int \frac {1}{\log ((-1+x) \log (x))} \, dx+\int \frac {e^{-e^{e^5 x}+x}}{\log ((-1+x) \log (x))} \, dx-\int \frac {e^{5-e^{e^5 x}+\left (1+e^5\right ) x}}{\log ((-1+x) \log (x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.64, size = 33, normalized size = 1.00 \begin {gather*} \frac {e^{-e^{e^5 x}+x}-x+x^2 \log (5)}{\log ((-1+x) \log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 38, normalized size = 1.15 \begin {gather*} \frac {x^{2} \log \relax (5) - x + e^{\left ({\left (x e^{5} - e^{\left (x e^{5} + 5\right )}\right )} e^{\left (-5\right )}\right )}}{\log \left ({\left (x - 1\right )} \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 33, normalized size = 1.00 \begin {gather*} \frac {x^{2} \log \relax (5) - x + e^{\left (x - e^{\left (x e^{5}\right )}\right )}}{\log \left (x \log \relax (x) - \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.50, size = 118, normalized size = 3.58
method | result | size |
risch | \(\frac {2 i \left (x^{2} \ln \relax (5)+{\mathrm e}^{x -{\mathrm e}^{x \,{\mathrm e}^{5}}}-x \right )}{\pi \mathrm {csgn}\left (i \ln \relax (x ) \left (x -1\right )\right )^{3}-\pi \mathrm {csgn}\left (i \ln \relax (x ) \left (x -1\right )\right )^{2} \mathrm {csgn}\left (i \ln \relax (x )\right )-\pi \mathrm {csgn}\left (i \ln \relax (x ) \left (x -1\right )\right )^{2} \mathrm {csgn}\left (i \left (x -1\right )\right )+\pi \,\mathrm {csgn}\left (i \ln \relax (x ) \left (x -1\right )\right ) \mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (i \left (x -1\right )\right )+2 i \ln \left (\ln \relax (x )\right )+2 i \ln \left (x -1\right )}\) | \(118\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 31, normalized size = 0.94 \begin {gather*} \frac {x^{2} \log \relax (5) - x + e^{\left (x - e^{\left (x e^{5}\right )}\right )}}{\log \left (x - 1\right ) + \log \left (\log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.89, size = 138, normalized size = 4.18 \begin {gather*} \frac {{\mathrm {e}}^{x-{\mathrm {e}}^{x\,{\mathrm {e}}^5}}}{\ln \left (\ln \relax (x)\,\left (x-1\right )\right )}-x\,\left (\ln \left (25\right )+1\right )+2\,x^2\,\ln \relax (5)+\frac {x\,\left (x\,\ln \relax (5)-1\right )-\frac {x\,\ln \left (\ln \relax (x)\,\left (x-1\right )\right )\,\ln \relax (x)\,\left (2\,x\,\ln \relax (5)-1\right )\,\left (x-1\right )}{x+x\,\ln \relax (x)-1}}{\ln \left (\ln \relax (x)\,\left (x-1\right )\right )}-\frac {x+2\,x\,\ln \relax (5)-2\,x^2\,\ln \relax (5)-2\,x^3\,\ln \relax (5)+2\,x^4\,\ln \relax (5)+x^2-x^3-1}{\left (x+1\right )\,\left (x+x\,\ln \relax (x)-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.90, size = 34, normalized size = 1.03 \begin {gather*} \frac {x^{2} \log {\relax (5 )} - x}{\log {\left (\left (x - 1\right ) \log {\relax (x )} \right )}} + \frac {e^{x - e^{x e^{5}}}}{\log {\left (\left (x - 1\right ) \log {\relax (x )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________