Optimal. Leaf size=30 \[ e^{-5+\frac {-3+x+\log \left (\frac {x+\left (-x^2+\log \left (x^2\right )\right )^2}{x}\right )}{x}} \]
________________________________________________________________________________________
Rubi [A] time = 1.41, antiderivative size = 41, normalized size of antiderivative = 1.37, number of steps used = 1, number of rules used = 1, integrand size = 151, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.007, Rules used = {6706} \begin {gather*} e^{-\frac {4 x+3}{x}} \left (\frac {x^4+\log ^2\left (x^2\right )-2 x^2 \log \left (x^2\right )+x}{x}\right )^{\frac {1}{x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e^{-\frac {3+4 x}{x}} \left (\frac {x+x^4-2 x^2 \log \left (x^2\right )+\log ^2\left (x^2\right )}{x}\right )^{\frac {1}{x}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 36, normalized size = 1.20 \begin {gather*} e^{-4-\frac {3}{x}} \left (1+x^3-2 x \log \left (x^2\right )+\frac {\log ^2\left (x^2\right )}{x}\right )^{\frac {1}{x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 38, normalized size = 1.27 \begin {gather*} e^{\left (-\frac {4 \, x - \log \left (\frac {x^{4} - 2 \, x^{2} \log \left (x^{2}\right ) + \log \left (x^{2}\right )^{2} + x}{x}\right ) + 3}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.09, size = 35, normalized size = 1.17 \begin {gather*} e^{\left (\frac {\log \left (x^{3} - 2 \, x \log \left (x^{2}\right ) + \frac {\log \left (x^{2}\right )^{2}}{x} + 1\right )}{x} - \frac {3}{x} - 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.12, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (-\ln \left (x^{2}\right )^{2}+2 x^{2} \ln \left (x^{2}\right )-x^{4}-x \right ) \ln \left (\frac {\ln \left (x^{2}\right )^{2}-2 x^{2} \ln \left (x^{2}\right )+x^{4}+x}{x}\right )+2 \ln \left (x^{2}\right )^{2}+\left (-8 x^{2}+4\right ) \ln \left (x^{2}\right )+6 x^{4}-4 x^{2}+3 x \right ) {\mathrm e}^{\frac {\ln \left (\frac {\ln \left (x^{2}\right )^{2}-2 x^{2} \ln \left (x^{2}\right )+x^{4}+x}{x}\right )-4 x -3}{x}}}{x^{2} \ln \left (x^{2}\right )^{2}-2 x^{4} \ln \left (x^{2}\right )+x^{6}+x^{3}}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 38, normalized size = 1.27 \begin {gather*} e^{\left (\frac {\log \left (x^{4} - 4 \, x^{2} \log \relax (x) + 4 \, \log \relax (x)^{2} + x\right )}{x} - \frac {\log \relax (x)}{x} - \frac {3}{x} - 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.43, size = 35, normalized size = 1.17 \begin {gather*} {\mathrm {e}}^{-4}\,{\mathrm {e}}^{-\frac {3}{x}}\,{\left (x^3-2\,x\,\ln \left (x^2\right )+\frac {{\ln \left (x^2\right )}^2}{x}+1\right )}^{1/x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.06, size = 32, normalized size = 1.07 \begin {gather*} e^{\frac {- 4 x + \log {\left (\frac {x^{4} - 2 x^{2} \log {\left (x^{2} \right )} + x + \log {\left (x^{2} \right )}^{2}}{x} \right )} - 3}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________