Optimal. Leaf size=33 \[ e^{\frac {e^2 x}{\left (-3+e^x\right ) x-\log \left (\log \left (\frac {x^2}{\log ^2(2) \log ^2(x)}\right )\right )}} \]
________________________________________________________________________________________
Rubi [A] time = 4.89, antiderivative size = 34, normalized size of antiderivative = 1.03, number of steps used = 2, number of rules used = 2, integrand size = 221, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.009, Rules used = {6688, 6706} \begin {gather*} \exp \left (-\frac {e^2 x}{\log \left (\log \left (\frac {x^2}{\log ^2(2) \log ^2(x)}\right )\right )+\left (3-e^x\right ) x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6688
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (2+\frac {e^2 x}{\left (-3+e^x\right ) x-\log \left (\log \left (\frac {x^2}{\log ^2(2) \log ^2(x)}\right )\right )}\right ) \left (-2-\log (x) \left (-2+\log \left (\frac {x^2}{\log ^2(2) \log ^2(x)}\right ) \left (e^x x^2+\log \left (\log \left (\frac {x^2}{\log ^2(2) \log ^2(x)}\right )\right )\right )\right )\right )}{\log (x) \log \left (\frac {x^2}{\log ^2(2) \log ^2(x)}\right ) \left (\left (-3+e^x\right ) x-\log \left (\log \left (\frac {x^2}{\log ^2(2) \log ^2(x)}\right )\right )\right )^2} \, dx\\ &=\exp \left (-\frac {e^2 x}{\left (3-e^x\right ) x+\log \left (\log \left (\frac {x^2}{\log ^2(2) \log ^2(x)}\right )\right )}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.32, size = 34, normalized size = 1.03 \begin {gather*} e^{-\frac {e^2 x}{3 x-e^x x+\log \left (\log \left (\frac {x^2}{\log ^2(2) \log ^2(x)}\right )\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.91, size = 38, normalized size = 1.15 \begin {gather*} e^{\left (-\frac {x e^{4}}{3 \, x e^{2} - x e^{\left (x + 2\right )} + e^{2} \log \left (\log \left (\frac {x^{2}}{\log \relax (2)^{2} \log \relax (x)^{2}}\right )\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.74, size = 151, normalized size = 4.58
method | result | size |
risch | \({\mathrm e}^{\frac {{\mathrm e}^{2} x}{{\mathrm e}^{x} x -\ln \left (-2 \ln \left (\ln \relax (2)\right )+2 \ln \relax (x )-2 \ln \left (\ln \relax (x )\right )+\frac {i \pi \,\mathrm {csgn}\left (i \ln \relax (x )^{2}\right ) \left (-\mathrm {csgn}\left (i \ln \relax (x )^{2}\right )+\mathrm {csgn}\left (i \ln \relax (x )\right )\right )^{2}}{2}-\frac {i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \left (-\mathrm {csgn}\left (i x^{2}\right )+\mathrm {csgn}\left (i x \right )\right )^{2}}{2}-\frac {i \pi \,\mathrm {csgn}\left (\frac {i x^{2}}{\ln \relax (x )^{2}}\right ) \left (-\mathrm {csgn}\left (\frac {i x^{2}}{\ln \relax (x )^{2}}\right )+\mathrm {csgn}\left (i x^{2}\right )\right ) \left (-\mathrm {csgn}\left (\frac {i x^{2}}{\ln \relax (x )^{2}}\right )+\mathrm {csgn}\left (\frac {i}{\ln \relax (x )^{2}}\right )\right )}{2}\right )-3 x}}\) | \(151\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (x^{2} e^{\left (x + 2\right )} \log \relax (x) \log \left (\frac {x^{2}}{\log \relax (2)^{2} \log \relax (x)^{2}}\right ) + e^{2} \log \relax (x) \log \left (\frac {x^{2}}{\log \relax (2)^{2} \log \relax (x)^{2}}\right ) \log \left (\log \left (\frac {x^{2}}{\log \relax (2)^{2} \log \relax (x)^{2}}\right )\right ) - 2 \, e^{2} \log \relax (x) + 2 \, e^{2}\right )} e^{\left (\frac {x e^{2}}{x e^{x} - 3 \, x - \log \left (\log \left (\frac {x^{2}}{\log \relax (2)^{2} \log \relax (x)^{2}}\right )\right )}\right )}}{2 \, {\left (x e^{x} - 3 \, x\right )} \log \relax (x) \log \left (\frac {x^{2}}{\log \relax (2)^{2} \log \relax (x)^{2}}\right ) \log \left (\log \left (\frac {x^{2}}{\log \relax (2)^{2} \log \relax (x)^{2}}\right )\right ) - \log \relax (x) \log \left (\frac {x^{2}}{\log \relax (2)^{2} \log \relax (x)^{2}}\right ) \log \left (\log \left (\frac {x^{2}}{\log \relax (2)^{2} \log \relax (x)^{2}}\right )\right )^{2} - {\left (x^{2} e^{\left (2 \, x\right )} - 6 \, x^{2} e^{x} + 9 \, x^{2}\right )} \log \relax (x) \log \left (\frac {x^{2}}{\log \relax (2)^{2} \log \relax (x)^{2}}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.03, size = 33, normalized size = 1.00 \begin {gather*} {\mathrm {e}}^{-\frac {x\,{\mathrm {e}}^2}{3\,x+\ln \left (\ln \left (x^2\right )+\ln \left (\frac {1}{{\ln \relax (x)}^2}\right )-2\,\ln \left (\ln \relax (2)\right )\right )-x\,{\mathrm {e}}^x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________