Optimal. Leaf size=20 \[ 5+x-\frac {e^5}{2 (x+2 x \log (\log (5)))} \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 21, normalized size of antiderivative = 1.05, number of steps used = 5, number of rules used = 3, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.088, Rules used = {6, 12, 14} \begin {gather*} x-\frac {e^5}{2 x (1+2 \log (\log (5)))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 14
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^5+2 x^2+4 x^2 \log (\log (5))}{x^2 (2+4 \log (\log (5)))} \, dx\\ &=\int \frac {e^5+x^2 (2+4 \log (\log (5)))}{x^2 (2+4 \log (\log (5)))} \, dx\\ &=\frac {\int \frac {e^5+x^2 (2+4 \log (\log (5)))}{x^2} \, dx}{2 (1+2 \log (\log (5)))}\\ &=\frac {\int \left (\frac {e^5}{x^2}+2 (1+2 \log (\log (5)))\right ) \, dx}{2 (1+2 \log (\log (5)))}\\ &=x-\frac {e^5}{2 x (1+2 \log (\log (5)))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 21, normalized size = 1.05 \begin {gather*} x-\frac {e^5}{2 x (1+2 \log (\log (5)))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 30, normalized size = 1.50 \begin {gather*} \frac {4 \, x^{2} \log \left (\log \relax (5)\right ) + 2 \, x^{2} - e^{5}}{2 \, {\left (2 \, x \log \left (\log \relax (5)\right ) + x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.14, size = 35, normalized size = 1.75 \begin {gather*} \frac {2 \, x \log \left (\log \relax (5)\right ) + x}{2 \, \log \left (\log \relax (5)\right ) + 1} - \frac {e^{5}}{2 \, x {\left (2 \, \log \left (\log \relax (5)\right ) + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.44, size = 19, normalized size = 0.95
method | result | size |
risch | \(x -\frac {{\mathrm e}^{5}}{2 x \left (2 \ln \left (\ln \relax (5)\right )+1\right )}\) | \(19\) |
norman | \(\frac {x^{2}-\frac {{\mathrm e}^{5}}{2 \left (2 \ln \left (\ln \relax (5)\right )+1\right )}}{x}\) | \(22\) |
default | \(\frac {4 x \ln \left (\ln \relax (5)\right )+2 x -\frac {{\mathrm e}^{5}}{x}}{4 \ln \left (\ln \relax (5)\right )+2}\) | \(29\) |
gosper | \(-\frac {-4 \ln \left (\ln \relax (5)\right ) x^{2}-2 x^{2}+{\mathrm e}^{5}}{2 x \left (2 \ln \left (\ln \relax (5)\right )+1\right )}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 18, normalized size = 0.90 \begin {gather*} x - \frac {e^{5}}{2 \, x {\left (2 \, \log \left (\log \relax (5)\right ) + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 18, normalized size = 0.90 \begin {gather*} x-\frac {{\mathrm {e}}^5}{x\,\left (4\,\ln \left (\ln \relax (5)\right )+2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 22, normalized size = 1.10 \begin {gather*} \frac {x \left (4 \log {\left (\log {\relax (5 )} \right )} + 2\right ) - \frac {e^{5}}{x}}{4 \log {\left (\log {\relax (5 )} \right )} + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________