Optimal. Leaf size=31 \[ \frac {3}{12-e^{3+x}+e^{2+2 x}-\frac {\log ^2\left (x^2\right )}{x^2}} \]
________________________________________________________________________________________
Rubi [F] time = 4.63, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {3 e^{3+x} x^4-6 e^{2+2 x} x^4+12 x \log \left (x^2\right )-6 x \log ^2\left (x^2\right )}{144 x^4-24 e^{3+x} x^4+e^{6+2 x} x^4+e^{4+4 x} x^4+e^{2+2 x} \left (24 x^4-2 e^{3+x} x^4\right )+\left (-24 x^2+2 e^{3+x} x^2-2 e^{2+2 x} x^2\right ) \log ^2\left (x^2\right )+\log ^4\left (x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 x \left (-e^{2+x} \left (-e+2 e^x\right ) x^3+4 \log \left (x^2\right )-2 \log ^2\left (x^2\right )\right )}{\left (\left (12-e^{3+x}+e^{2+2 x}\right ) x^2-\log ^2\left (x^2\right )\right )^2} \, dx\\ &=3 \int \frac {x \left (-e^{2+x} \left (-e+2 e^x\right ) x^3+4 \log \left (x^2\right )-2 \log ^2\left (x^2\right )\right )}{\left (\left (12-e^{3+x}+e^{2+2 x}\right ) x^2-\log ^2\left (x^2\right )\right )^2} \, dx\\ &=3 \int \left (-\frac {2 x^2}{12 x^2-e^{3+x} x^2+e^{2+2 x} x^2-\log ^2\left (x^2\right )}-\frac {x \left (-24 x^3+e^{3+x} x^3-4 \log \left (x^2\right )+2 \log ^2\left (x^2\right )+2 x \log ^2\left (x^2\right )\right )}{\left (12 x^2-e^{3+x} x^2+e^{2+2 x} x^2-\log ^2\left (x^2\right )\right )^2}\right ) \, dx\\ &=-\left (3 \int \frac {x \left (-24 x^3+e^{3+x} x^3-4 \log \left (x^2\right )+2 \log ^2\left (x^2\right )+2 x \log ^2\left (x^2\right )\right )}{\left (12 x^2-e^{3+x} x^2+e^{2+2 x} x^2-\log ^2\left (x^2\right )\right )^2} \, dx\right )-6 \int \frac {x^2}{12 x^2-e^{3+x} x^2+e^{2+2 x} x^2-\log ^2\left (x^2\right )} \, dx\\ &=-\left (3 \int \left (-\frac {24 x^4}{\left (12 x^2-e^{3+x} x^2+e^{2+2 x} x^2-\log ^2\left (x^2\right )\right )^2}+\frac {e^{3+x} x^4}{\left (12 x^2-e^{3+x} x^2+e^{2+2 x} x^2-\log ^2\left (x^2\right )\right )^2}-\frac {4 x \log \left (x^2\right )}{\left (12 x^2-e^{3+x} x^2+e^{2+2 x} x^2-\log ^2\left (x^2\right )\right )^2}+\frac {2 x \log ^2\left (x^2\right )}{\left (12 x^2-e^{3+x} x^2+e^{2+2 x} x^2-\log ^2\left (x^2\right )\right )^2}+\frac {2 x^2 \log ^2\left (x^2\right )}{\left (12 x^2-e^{3+x} x^2+e^{2+2 x} x^2-\log ^2\left (x^2\right )\right )^2}\right ) \, dx\right )-6 \int \frac {x^2}{12 x^2-e^{3+x} x^2+e^{2+2 x} x^2-\log ^2\left (x^2\right )} \, dx\\ &=-\left (3 \int \frac {e^{3+x} x^4}{\left (12 x^2-e^{3+x} x^2+e^{2+2 x} x^2-\log ^2\left (x^2\right )\right )^2} \, dx\right )-6 \int \frac {x \log ^2\left (x^2\right )}{\left (12 x^2-e^{3+x} x^2+e^{2+2 x} x^2-\log ^2\left (x^2\right )\right )^2} \, dx-6 \int \frac {x^2 \log ^2\left (x^2\right )}{\left (12 x^2-e^{3+x} x^2+e^{2+2 x} x^2-\log ^2\left (x^2\right )\right )^2} \, dx-6 \int \frac {x^2}{12 x^2-e^{3+x} x^2+e^{2+2 x} x^2-\log ^2\left (x^2\right )} \, dx+12 \int \frac {x \log \left (x^2\right )}{\left (12 x^2-e^{3+x} x^2+e^{2+2 x} x^2-\log ^2\left (x^2\right )\right )^2} \, dx+72 \int \frac {x^4}{\left (12 x^2-e^{3+x} x^2+e^{2+2 x} x^2-\log ^2\left (x^2\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.89, size = 36, normalized size = 1.16 \begin {gather*} \frac {3 x^2}{\left (12-e^{3+x}+e^{2+2 x}\right ) x^2-\log ^2\left (x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.10, size = 46, normalized size = 1.48 \begin {gather*} \frac {3 \, x^{2} e^{4}}{12 \, x^{2} e^{4} + x^{2} e^{\left (2 \, x + 6\right )} - x^{2} e^{\left (x + 7\right )} - e^{4} \log \left (x^{2}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.50, size = 189, normalized size = 6.10
method | result | size |
risch | \(\frac {12 x^{2}}{\pi ^{2} \mathrm {csgn}\left (i x \right )^{4} \mathrm {csgn}\left (i x^{2}\right )^{2}-4 \pi ^{2} \mathrm {csgn}\left (i x \right )^{3} \mathrm {csgn}\left (i x^{2}\right )^{3}+6 \pi ^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{4}-4 \pi ^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{5}+\pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{6}+8 i \ln \relax (x ) \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-16 i \ln \relax (x ) \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+8 i \ln \relax (x ) \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+4 x^{2} {\mathrm e}^{2 x +2}-4 x^{2} {\mathrm e}^{3+x}+48 x^{2}-16 \ln \relax (x )^{2}}\) | \(189\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 38, normalized size = 1.23 \begin {gather*} \frac {3 \, x^{2}}{x^{2} e^{\left (2 \, x + 2\right )} - x^{2} e^{\left (x + 3\right )} + 12 \, x^{2} - 4 \, \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {12\,x\,\ln \left (x^2\right )+3\,x^4\,{\mathrm {e}}^{x+3}-6\,x\,{\ln \left (x^2\right )}^2-6\,x^4\,{\mathrm {e}}^{2\,x+2}}{{\ln \left (x^2\right )}^4-24\,x^4\,{\mathrm {e}}^{x+3}-{\mathrm {e}}^{2\,x+2}\,\left (2\,x^4\,{\mathrm {e}}^{x+3}-24\,x^4\right )+x^4\,{\mathrm {e}}^{2\,x+6}+x^4\,{\mathrm {e}}^{4\,x+4}+144\,x^4-{\ln \left (x^2\right )}^2\,\left (2\,x^2\,{\mathrm {e}}^{2\,x+2}-2\,x^2\,{\mathrm {e}}^{x+3}+24\,x^2\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.43, size = 48, normalized size = 1.55 \begin {gather*} \frac {3 x^{2} e^{4}}{- x^{2} e^{4} e^{x + 3} + x^{2} e^{2 x + 6} + 12 x^{2} e^{4} - e^{4} \log {\left (x^{2} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________