Optimal. Leaf size=17 \[ 5+\frac {5 e^{14+2 x}}{x}-x \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 16, normalized size of antiderivative = 0.94, number of steps used = 4, number of rules used = 3, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {12, 14, 2197} \begin {gather*} \frac {5 e^{2 x+14}}{x}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2197
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-e^2 x^2+e^{16+2 x} (-5+10 x)}{x^2} \, dx}{e^2}\\ &=\frac {\int \left (-e^2+\frac {5 e^{16+2 x} (-1+2 x)}{x^2}\right ) \, dx}{e^2}\\ &=-x+\frac {5 \int \frac {e^{16+2 x} (-1+2 x)}{x^2} \, dx}{e^2}\\ &=\frac {5 e^{14+2 x}}{x}-x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 16, normalized size = 0.94 \begin {gather*} \frac {5 e^{2 (7+x)}}{x}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 22, normalized size = 1.29 \begin {gather*} -\frac {{\left (x^{2} e^{2} - 5 \, e^{\left (2 \, x + 16\right )}\right )} e^{\left (-2\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 22, normalized size = 1.29 \begin {gather*} -\frac {{\left (x^{2} e^{2} - 5 \, e^{\left (2 \, x + 16\right )}\right )} e^{\left (-2\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.17, size = 16, normalized size = 0.94
method | result | size |
risch | \(-x +\frac {5 \,{\mathrm e}^{14+2 x}}{x}\) | \(16\) |
norman | \(\frac {-x^{2}+5 \,{\mathrm e}^{-2} {\mathrm e}^{16} {\mathrm e}^{2 x}}{x}\) | \(23\) |
default | \({\mathrm e}^{-2} \left (-10 \,{\mathrm e}^{16} \left (-\frac {{\mathrm e}^{2 x}}{2 x}-\expIntegralEi \left (1, -2 x \right )\right )-10 \,{\mathrm e}^{16} \expIntegralEi \left (1, -2 x \right )-{\mathrm e}^{2} x \right )\) | \(42\) |
derivativedivides | \(\frac {{\mathrm e}^{-2} \left (-20 \,{\mathrm e}^{16} \left (-\frac {{\mathrm e}^{2 x}}{2 x}-\expIntegralEi \left (1, -2 x \right )\right )-20 \,{\mathrm e}^{16} \expIntegralEi \left (1, -2 x \right )-2 \,{\mathrm e}^{2} x \right )}{2}\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.44, size = 26, normalized size = 1.53 \begin {gather*} {\left (10 \, {\rm Ei}\left (2 \, x\right ) e^{16} - x e^{2} - 10 \, e^{16} \Gamma \left (-1, -2 \, x\right )\right )} e^{\left (-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.06, size = 15, normalized size = 0.88 \begin {gather*} \frac {5\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{14}}{x}-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 12, normalized size = 0.71 \begin {gather*} - x + \frac {5 e^{14} e^{2 x}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________