Optimal. Leaf size=25 \[ -\frac {2}{x^2 (3+x) \left (\frac {25-e}{x}+2 x\right )} \]
________________________________________________________________________________________
Rubi [C] time = 0.26, antiderivative size = 143, normalized size of antiderivative = 5.72, number of steps used = 5, number of rules used = 3, integrand size = 107, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.028, Rules used = {2074, 639, 204} \begin {gather*} \frac {4 (6 x-e+25)}{\left (1075-68 e+e^2\right ) \left (2 x^2-e+25\right )}-\frac {2}{3 (25-e) x}+\frac {2}{3 (43-e) (x+3)}-\frac {12 \sqrt {\frac {2}{25-e}} \tan ^{-1}\left (\sqrt {\frac {2}{25-e}} x\right )}{1075-68 e+e^2}+\frac {12 \sqrt {2} \tan ^{-1}\left (\sqrt {\frac {2}{25-e}} x\right )}{(25-e)^{3/2} (43-e)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 204
Rule 639
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {2}{3 (-25+e) x^2}+\frac {2}{3 (-43+e) (3+x)^2}+\frac {16 (-3+x)}{(-43+e) \left (-25+e-2 x^2\right )^2}+\frac {24}{(-43+e) (-25+e) \left (-25+e-2 x^2\right )}\right ) \, dx\\ &=-\frac {2}{3 (25-e) x}+\frac {2}{3 (43-e) (3+x)}-\frac {16 \int \frac {-3+x}{\left (-25+e-2 x^2\right )^2} \, dx}{43-e}+\frac {24 \int \frac {1}{-25+e-2 x^2} \, dx}{1075-68 e+e^2}\\ &=-\frac {2}{3 (25-e) x}+\frac {2}{3 (43-e) (3+x)}+\frac {4 (25-e+6 x)}{\left (1075-68 e+e^2\right ) \left (25-e+2 x^2\right )}-\frac {12 \sqrt {\frac {2}{25-e}} \tan ^{-1}\left (\sqrt {\frac {2}{25-e}} x\right )}{1075-68 e+e^2}-\frac {24 \int \frac {1}{-25+e-2 x^2} \, dx}{1075-68 e+e^2}\\ &=-\frac {2}{3 (25-e) x}+\frac {2}{3 (43-e) (3+x)}+\frac {4 (25-e+6 x)}{\left (1075-68 e+e^2\right ) \left (25-e+2 x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 22, normalized size = 0.88 \begin {gather*} -\frac {2}{x (3+x) \left (25-e+2 x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.19, size = 34, normalized size = 1.36 \begin {gather*} -\frac {2}{2 \, x^{4} + 6 \, x^{3} + 25 \, x^{2} - {\left (x^{2} + 3 \, x\right )} e + 75 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: NotImplementedError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.24, size = 22, normalized size = 0.88
method | result | size |
norman | \(\frac {2}{x \left (3+x \right ) \left (-2 x^{2}+{\mathrm e}-25\right )}\) | \(22\) |
gosper | \(\frac {2}{x \left (-2 x^{3}+x \,{\mathrm e}-6 x^{2}+3 \,{\mathrm e}-25 x -75\right )}\) | \(31\) |
risch | \(\frac {2}{x \left (-2 x^{3}+x \,{\mathrm e}-6 x^{2}+3 \,{\mathrm e}-25 x -75\right )}\) | \(31\) |
default | \(-\frac {2 \left ({\mathrm e}^{3}-129 \,{\mathrm e}^{2}+5547 \,{\mathrm e}-79507\right )}{3 \left (1849-86 \,{\mathrm e}+{\mathrm e}^{2}\right )^{2} \left (3+x \right )}-\frac {2 \left (25-{\mathrm e}\right )}{\left (3 \,{\mathrm e}^{2}-150 \,{\mathrm e}+1875\right ) x}+\frac {\frac {2 \left (-\frac {6 \left (8772 \,{\mathrm e} \,{\mathrm e}^{2}-874964 \,{\mathrm e}^{2}+{\mathrm e} \,{\mathrm e}^{4}-154 \,{\mathrm e} \,{\mathrm e}^{3}+{\mathrm e}^{5}+14884450 \,{\mathrm e}-204 \,{\mathrm e}^{4}+16472 \,{\mathrm e}^{3}-99383750\right ) x}{{\mathrm e}-25}+2 \,{\mathrm e}^{5}-874964 \,{\mathrm e}^{2}+14884450 \,{\mathrm e}-358 \,{\mathrm e}^{4}+25244 \,{\mathrm e}^{3}-99383750\right )}{-2 x^{2}+{\mathrm e}-25}+\frac {12 \left (-8772 \,{\mathrm e} \,{\mathrm e}^{2}-{\mathrm e} \,{\mathrm e}^{4}+154 \,{\mathrm e} \,{\mathrm e}^{3}+{\mathrm e}^{5}-154 \,{\mathrm e}^{4}+8772 \,{\mathrm e}^{3}\right ) \arctan \left (\frac {2 x}{\sqrt {-2 \,{\mathrm e}+50}}\right )}{\left ({\mathrm e}-25\right ) \sqrt {-2 \,{\mathrm e}+50}}}{\left (1849-86 \,{\mathrm e}+{\mathrm e}^{2}\right )^{2} \left ({\mathrm e}^{2}-50 \,{\mathrm e}+625\right )}\) | \(231\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 31, normalized size = 1.24 \begin {gather*} -\frac {2}{2 \, x^{4} + 6 \, x^{3} - x^{2} {\left (e - 25\right )} - 3 \, x {\left (e - 25\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.42, size = 33, normalized size = 1.32 \begin {gather*} -\frac {2}{2\,x^4+6\,x^3+\left (25-\mathrm {e}\right )\,x^2+\left (75-3\,\mathrm {e}\right )\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.65, size = 29, normalized size = 1.16 \begin {gather*} - \frac {2}{2 x^{4} + 6 x^{3} + x^{2} \left (25 - e\right ) + x \left (75 - 3 e\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________