Optimal. Leaf size=21 \[ \frac {e^{x^2}+x}{x-\frac {3}{9+4 x}} \]
________________________________________________________________________________________
Rubi [F] time = 1.18, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-27-24 x+e^{x^2} \left (-93-126 x+122 x^2+144 x^3+32 x^4\right )}{9-54 x+57 x^2+72 x^3+16 x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {3 (9+8 x)}{\left (-3+9 x+4 x^2\right )^2}+\frac {e^{x^2} \left (-93-126 x+122 x^2+144 x^3+32 x^4\right )}{\left (-3+9 x+4 x^2\right )^2}\right ) \, dx\\ &=-\left (3 \int \frac {9+8 x}{\left (-3+9 x+4 x^2\right )^2} \, dx\right )+\int \frac {e^{x^2} \left (-93-126 x+122 x^2+144 x^3+32 x^4\right )}{\left (-3+9 x+4 x^2\right )^2} \, dx\\ &=-\frac {3}{3-9 x-4 x^2}+\int \left (2 e^{x^2}-\frac {3 e^{x^2} (35+12 x)}{\left (-3+9 x+4 x^2\right )^2}+\frac {2 e^{x^2}}{-3+9 x+4 x^2}\right ) \, dx\\ &=-\frac {3}{3-9 x-4 x^2}+2 \int e^{x^2} \, dx+2 \int \frac {e^{x^2}}{-3+9 x+4 x^2} \, dx-3 \int \frac {e^{x^2} (35+12 x)}{\left (-3+9 x+4 x^2\right )^2} \, dx\\ &=-\frac {3}{3-9 x-4 x^2}+\sqrt {\pi } \text {erfi}(x)+2 \int \left (-\frac {8 e^{x^2}}{\sqrt {129} \left (-9+\sqrt {129}-8 x\right )}-\frac {8 e^{x^2}}{\sqrt {129} \left (9+\sqrt {129}+8 x\right )}\right ) \, dx-3 \int \left (\frac {35 e^{x^2}}{\left (-3+9 x+4 x^2\right )^2}+\frac {12 e^{x^2} x}{\left (-3+9 x+4 x^2\right )^2}\right ) \, dx\\ &=-\frac {3}{3-9 x-4 x^2}+\sqrt {\pi } \text {erfi}(x)-36 \int \frac {e^{x^2} x}{\left (-3+9 x+4 x^2\right )^2} \, dx-105 \int \frac {e^{x^2}}{\left (-3+9 x+4 x^2\right )^2} \, dx-\frac {16 \int \frac {e^{x^2}}{-9+\sqrt {129}-8 x} \, dx}{\sqrt {129}}-\frac {16 \int \frac {e^{x^2}}{9+\sqrt {129}+8 x} \, dx}{\sqrt {129}}\\ &=-\frac {3}{3-9 x-4 x^2}+\sqrt {\pi } \text {erfi}(x)-36 \int \left (\frac {8 \left (-9+\sqrt {129}\right ) e^{x^2}}{129 \left (-9+\sqrt {129}-8 x\right )^2}-\frac {8 \sqrt {\frac {3}{43}} e^{x^2}}{43 \left (-9+\sqrt {129}-8 x\right )}+\frac {8 \left (-9-\sqrt {129}\right ) e^{x^2}}{129 \left (9+\sqrt {129}+8 x\right )^2}-\frac {8 \sqrt {\frac {3}{43}} e^{x^2}}{43 \left (9+\sqrt {129}+8 x\right )}\right ) \, dx-105 \int \left (\frac {64 e^{x^2}}{129 \left (-9+\sqrt {129}-8 x\right )^2}+\frac {64 e^{x^2}}{129 \sqrt {129} \left (-9+\sqrt {129}-8 x\right )}+\frac {64 e^{x^2}}{129 \left (9+\sqrt {129}+8 x\right )^2}+\frac {64 e^{x^2}}{129 \sqrt {129} \left (9+\sqrt {129}+8 x\right )}\right ) \, dx-\frac {16 \int \frac {e^{x^2}}{-9+\sqrt {129}-8 x} \, dx}{\sqrt {129}}-\frac {16 \int \frac {e^{x^2}}{9+\sqrt {129}+8 x} \, dx}{\sqrt {129}}\\ &=-\frac {3}{3-9 x-4 x^2}+\sqrt {\pi } \text {erfi}(x)-\frac {2240}{43} \int \frac {e^{x^2}}{\left (-9+\sqrt {129}-8 x\right )^2} \, dx-\frac {2240}{43} \int \frac {e^{x^2}}{\left (9+\sqrt {129}+8 x\right )^2} \, dx+\frac {1}{43} \left (288 \sqrt {\frac {3}{43}}\right ) \int \frac {e^{x^2}}{-9+\sqrt {129}-8 x} \, dx+\frac {1}{43} \left (288 \sqrt {\frac {3}{43}}\right ) \int \frac {e^{x^2}}{9+\sqrt {129}+8 x} \, dx-\frac {16 \int \frac {e^{x^2}}{-9+\sqrt {129}-8 x} \, dx}{\sqrt {129}}-\frac {16 \int \frac {e^{x^2}}{9+\sqrt {129}+8 x} \, dx}{\sqrt {129}}-\frac {2240 \int \frac {e^{x^2}}{-9+\sqrt {129}-8 x} \, dx}{43 \sqrt {129}}-\frac {2240 \int \frac {e^{x^2}}{9+\sqrt {129}+8 x} \, dx}{43 \sqrt {129}}+\frac {1}{43} \left (96 \left (9-\sqrt {129}\right )\right ) \int \frac {e^{x^2}}{\left (-9+\sqrt {129}-8 x\right )^2} \, dx+\frac {1}{43} \left (96 \left (9+\sqrt {129}\right )\right ) \int \frac {e^{x^2}}{\left (9+\sqrt {129}+8 x\right )^2} \, dx\\ &=\frac {280 e^{x^2}}{43 \left (9-\sqrt {129}+8 x\right )}-\frac {12 \left (9-\sqrt {129}\right ) e^{x^2}}{43 \left (9-\sqrt {129}+8 x\right )}+\frac {280 e^{x^2}}{43 \left (9+\sqrt {129}+8 x\right )}-\frac {12 \left (9+\sqrt {129}\right ) e^{x^2}}{43 \left (9+\sqrt {129}+8 x\right )}-\frac {3}{3-9 x-4 x^2}+\sqrt {\pi } \text {erfi}(x)-2 \left (\frac {70}{43} \int e^{x^2} \, dx\right )+\frac {1}{43} \left (288 \sqrt {\frac {3}{43}}\right ) \int \frac {e^{x^2}}{-9+\sqrt {129}-8 x} \, dx+\frac {1}{43} \left (288 \sqrt {\frac {3}{43}}\right ) \int \frac {e^{x^2}}{9+\sqrt {129}+8 x} \, dx-\frac {16 \int \frac {e^{x^2}}{-9+\sqrt {129}-8 x} \, dx}{\sqrt {129}}-\frac {16 \int \frac {e^{x^2}}{9+\sqrt {129}+8 x} \, dx}{\sqrt {129}}-\frac {2240 \int \frac {e^{x^2}}{-9+\sqrt {129}-8 x} \, dx}{43 \sqrt {129}}-\frac {2240 \int \frac {e^{x^2}}{9+\sqrt {129}+8 x} \, dx}{43 \sqrt {129}}+\frac {1}{43} \left (3 \left (9-\sqrt {129}\right )\right ) \int e^{x^2} \, dx-\frac {1}{43} \left (70 \left (9-\sqrt {129}\right )\right ) \int \frac {e^{x^2}}{-9+\sqrt {129}-8 x} \, dx+\frac {1}{43} \left (3 \left (9-\sqrt {129}\right )^2\right ) \int \frac {e^{x^2}}{-9+\sqrt {129}-8 x} \, dx+\frac {1}{43} \left (3 \left (9+\sqrt {129}\right )\right ) \int e^{x^2} \, dx+\frac {1}{43} \left (70 \left (9+\sqrt {129}\right )\right ) \int \frac {e^{x^2}}{9+\sqrt {129}+8 x} \, dx-\frac {1}{43} \left (3 \left (9+\sqrt {129}\right )^2\right ) \int \frac {e^{x^2}}{9+\sqrt {129}+8 x} \, dx\\ &=\frac {280 e^{x^2}}{43 \left (9-\sqrt {129}+8 x\right )}-\frac {12 \left (9-\sqrt {129}\right ) e^{x^2}}{43 \left (9-\sqrt {129}+8 x\right )}+\frac {280 e^{x^2}}{43 \left (9+\sqrt {129}+8 x\right )}-\frac {12 \left (9+\sqrt {129}\right ) e^{x^2}}{43 \left (9+\sqrt {129}+8 x\right )}-\frac {3}{3-9 x-4 x^2}-\frac {27}{43} \sqrt {\pi } \text {erfi}(x)+\frac {3}{86} \left (9-\sqrt {129}\right ) \sqrt {\pi } \text {erfi}(x)+\frac {3}{86} \left (9+\sqrt {129}\right ) \sqrt {\pi } \text {erfi}(x)+\frac {1}{43} \left (288 \sqrt {\frac {3}{43}}\right ) \int \frac {e^{x^2}}{-9+\sqrt {129}-8 x} \, dx+\frac {1}{43} \left (288 \sqrt {\frac {3}{43}}\right ) \int \frac {e^{x^2}}{9+\sqrt {129}+8 x} \, dx-\frac {16 \int \frac {e^{x^2}}{-9+\sqrt {129}-8 x} \, dx}{\sqrt {129}}-\frac {16 \int \frac {e^{x^2}}{9+\sqrt {129}+8 x} \, dx}{\sqrt {129}}-\frac {2240 \int \frac {e^{x^2}}{-9+\sqrt {129}-8 x} \, dx}{43 \sqrt {129}}-\frac {2240 \int \frac {e^{x^2}}{9+\sqrt {129}+8 x} \, dx}{43 \sqrt {129}}-\frac {1}{43} \left (70 \left (9-\sqrt {129}\right )\right ) \int \frac {e^{x^2}}{-9+\sqrt {129}-8 x} \, dx+\frac {1}{43} \left (3 \left (9-\sqrt {129}\right )^2\right ) \int \frac {e^{x^2}}{-9+\sqrt {129}-8 x} \, dx+\frac {1}{43} \left (70 \left (9+\sqrt {129}\right )\right ) \int \frac {e^{x^2}}{9+\sqrt {129}+8 x} \, dx-\frac {1}{43} \left (3 \left (9+\sqrt {129}\right )^2\right ) \int \frac {e^{x^2}}{9+\sqrt {129}+8 x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.30, size = 26, normalized size = 1.24 \begin {gather*} \frac {3+e^{x^2} (9+4 x)}{-3+9 x+4 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 25, normalized size = 1.19 \begin {gather*} \frac {{\left (4 \, x + 9\right )} e^{\left (x^{2}\right )} + 3}{4 \, x^{2} + 9 \, x - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 28, normalized size = 1.33 \begin {gather*} \frac {4 \, x e^{\left (x^{2}\right )} + 9 \, e^{\left (x^{2}\right )} + 3}{4 \, x^{2} + 9 \, x - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 36, normalized size = 1.71
method | result | size |
norman | \(\frac {9 x +4 x^{2}+4 \,{\mathrm e}^{x^{2}} x +9 \,{\mathrm e}^{x^{2}}}{4 x^{2}+9 x -3}\) | \(36\) |
risch | \(\frac {3}{4 \left (x^{2}+\frac {9}{4} x -\frac {3}{4}\right )}+\frac {\left (4 x +9\right ) {\mathrm e}^{x^{2}}}{4 x^{2}+9 x -3}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.61, size = 61, normalized size = 2.90 \begin {gather*} \frac {{\left (4 \, x + 9\right )} e^{\left (x^{2}\right )}}{4 \, x^{2} + 9 \, x - 3} + \frac {9 \, {\left (8 \, x + 9\right )}}{43 \, {\left (4 \, x^{2} + 9 \, x - 3\right )}} - \frac {24 \, {\left (3 \, x - 2\right )}}{43 \, {\left (4 \, x^{2} + 9 \, x - 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.18, size = 24, normalized size = 1.14 \begin {gather*} \frac {\left (x+{\mathrm {e}}^{x^2}\right )\,\left (4\,x+9\right )}{4\,x^2+9\,x-3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.14, size = 31, normalized size = 1.48 \begin {gather*} \frac {\left (4 x + 9\right ) e^{x^{2}}}{4 x^{2} + 9 x - 3} + \frac {3}{4 x^{2} + 9 x - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________