Optimal. Leaf size=23 \[ -x+\frac {e^{10} \left (2+125 \left (e^2+\log \left (x^2\right )\right )\right )}{x^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 39, normalized size of antiderivative = 1.70, number of steps used = 5, number of rules used = 2, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {14, 2304} \begin {gather*} -\frac {e^{10} \left (123-125 e^2\right )}{x^2}+\frac {125 e^{10}}{x^2}+\frac {125 e^{10} \log \left (x^2\right )}{x^2}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2304
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {246 e^{10}-250 e^{12}-x^3}{x^3}-\frac {250 e^{10} \log \left (x^2\right )}{x^3}\right ) \, dx\\ &=-\left (\left (250 e^{10}\right ) \int \frac {\log \left (x^2\right )}{x^3} \, dx\right )+\int \frac {246 e^{10}-250 e^{12}-x^3}{x^3} \, dx\\ &=\frac {125 e^{10}}{x^2}+\frac {125 e^{10} \log \left (x^2\right )}{x^2}+\int \left (-1+\frac {2 e^{10} \left (123-125 e^2\right )}{x^3}\right ) \, dx\\ &=\frac {125 e^{10}}{x^2}-\frac {e^{10} \left (123-125 e^2\right )}{x^2}-x+\frac {125 e^{10} \log \left (x^2\right )}{x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 32, normalized size = 1.39 \begin {gather*} \frac {2 e^{10}}{x^2}+\frac {125 e^{12}}{x^2}-x+\frac {125 e^{10} \log \left (x^2\right )}{x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 25, normalized size = 1.09 \begin {gather*} -\frac {x^{3} - 125 \, e^{10} \log \left (x^{2}\right ) - 125 \, e^{12} - 2 \, e^{10}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 25, normalized size = 1.09 \begin {gather*} -\frac {x^{3} - 125 \, e^{10} \log \left (x^{2}\right ) - 125 \, e^{12} - 2 \, e^{10}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 31, normalized size = 1.35
method | result | size |
risch | \(\frac {125 \,{\mathrm e}^{10} \ln \left (x^{2}\right )}{x^{2}}+\frac {125 \,{\mathrm e}^{12}+2 \,{\mathrm e}^{10}-x^{3}}{x^{2}}\) | \(31\) |
default | \(-x +\frac {250 \,{\mathrm e}^{12}-246 \,{\mathrm e}^{10}}{2 x^{2}}+\frac {125 \,{\mathrm e}^{10} \ln \left (x^{2}\right )}{x^{2}}+\frac {125 \,{\mathrm e}^{10}}{x^{2}}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 34, normalized size = 1.48 \begin {gather*} 125 \, {\left (\frac {\log \left (x^{2}\right )}{x^{2}} + \frac {1}{x^{2}}\right )} e^{10} - x + \frac {125 \, e^{12}}{x^{2}} - \frac {123 \, e^{10}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.13, size = 26, normalized size = 1.13 \begin {gather*} \frac {125\,\ln \left (x^2\right )\,{\mathrm {e}}^{10}+{\mathrm {e}}^{10}\,\left (125\,{\mathrm {e}}^2+2\right )}{x^2}-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 29, normalized size = 1.26 \begin {gather*} - x + \frac {125 e^{10} \log {\left (x^{2} \right )}}{x^{2}} - \frac {- 125 e^{12} - 2 e^{10}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________