Optimal. Leaf size=30 \[ -e^4+x-\frac {2 e^x \left (1-e^{e^x}\right )}{\frac {2}{x}+x} \]
________________________________________________________________________________________
Rubi [F] time = 1.80, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4+4 x^2+x^4+e^x \left (-4-4 x+2 x^2-2 x^3\right )+e^{e^x} \left (e^{2 x} \left (4 x+2 x^3\right )+e^x \left (4+4 x-2 x^2+2 x^3\right )\right )}{4+4 x^2+x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4+4 x^2+x^4+e^x \left (-4-4 x+2 x^2-2 x^3\right )+e^{e^x} \left (e^{2 x} \left (4 x+2 x^3\right )+e^x \left (4+4 x-2 x^2+2 x^3\right )\right )}{\left (2+x^2\right )^2} \, dx\\ &=\int \left (1+\frac {2 e^{e^x+2 x} x}{2+x^2}+\frac {2 e^x \left (-1+e^{e^x}\right ) \left (2+2 x-x^2+x^3\right )}{\left (2+x^2\right )^2}\right ) \, dx\\ &=x+2 \int \frac {e^{e^x+2 x} x}{2+x^2} \, dx+2 \int \frac {e^x \left (-1+e^{e^x}\right ) \left (2+2 x-x^2+x^3\right )}{\left (2+x^2\right )^2} \, dx\\ &=x+2 \int \left (-\frac {e^{e^x+2 x}}{2 \left (i \sqrt {2}-x\right )}+\frac {e^{e^x+2 x}}{2 \left (i \sqrt {2}+x\right )}\right ) \, dx+2 \int \left (\frac {e^x \left (-2-2 x+x^2-x^3\right )}{\left (2+x^2\right )^2}+\frac {e^{e^x+x} \left (2+2 x-x^2+x^3\right )}{\left (2+x^2\right )^2}\right ) \, dx\\ &=x+2 \int \frac {e^x \left (-2-2 x+x^2-x^3\right )}{\left (2+x^2\right )^2} \, dx+2 \int \frac {e^{e^x+x} \left (2+2 x-x^2+x^3\right )}{\left (2+x^2\right )^2} \, dx-\int \frac {e^{e^x+2 x}}{i \sqrt {2}-x} \, dx+\int \frac {e^{e^x+2 x}}{i \sqrt {2}+x} \, dx\\ &=x-\frac {2 e^x \left (2 x+x^3\right )}{\left (2+x^2\right )^2}+2 \int \left (\frac {4 e^{e^x+x}}{\left (2+x^2\right )^2}+\frac {e^{e^x+x} (-1+x)}{2+x^2}\right ) \, dx-\int \frac {e^{e^x+2 x}}{i \sqrt {2}-x} \, dx+\int \frac {e^{e^x+2 x}}{i \sqrt {2}+x} \, dx\\ &=x-\frac {2 e^x \left (2 x+x^3\right )}{\left (2+x^2\right )^2}+2 \int \frac {e^{e^x+x} (-1+x)}{2+x^2} \, dx+8 \int \frac {e^{e^x+x}}{\left (2+x^2\right )^2} \, dx-\int \frac {e^{e^x+2 x}}{i \sqrt {2}-x} \, dx+\int \frac {e^{e^x+2 x}}{i \sqrt {2}+x} \, dx\\ &=x-\frac {2 e^x \left (2 x+x^3\right )}{\left (2+x^2\right )^2}+2 \int \left (\frac {\left (-2-i \sqrt {2}\right ) e^{e^x+x}}{4 \left (i \sqrt {2}-x\right )}+\frac {\left (2-i \sqrt {2}\right ) e^{e^x+x}}{4 \left (i \sqrt {2}+x\right )}\right ) \, dx+8 \int \left (-\frac {e^{e^x+x}}{8 \left (i \sqrt {2}-x\right )^2}-\frac {e^{e^x+x}}{8 \left (i \sqrt {2}+x\right )^2}-\frac {e^{e^x+x}}{4 \left (-2-x^2\right )}\right ) \, dx-\int \frac {e^{e^x+2 x}}{i \sqrt {2}-x} \, dx+\int \frac {e^{e^x+2 x}}{i \sqrt {2}+x} \, dx\\ &=x-\frac {2 e^x \left (2 x+x^3\right )}{\left (2+x^2\right )^2}-2 \int \frac {e^{e^x+x}}{-2-x^2} \, dx+\frac {1}{2} \left (2-i \sqrt {2}\right ) \int \frac {e^{e^x+x}}{i \sqrt {2}+x} \, dx-\frac {1}{2} \left (2+i \sqrt {2}\right ) \int \frac {e^{e^x+x}}{i \sqrt {2}-x} \, dx-\int \frac {e^{e^x+x}}{\left (i \sqrt {2}-x\right )^2} \, dx-\int \frac {e^{e^x+2 x}}{i \sqrt {2}-x} \, dx-\int \frac {e^{e^x+x}}{\left (i \sqrt {2}+x\right )^2} \, dx+\int \frac {e^{e^x+2 x}}{i \sqrt {2}+x} \, dx\\ &=x-\frac {2 e^x \left (2 x+x^3\right )}{\left (2+x^2\right )^2}-2 \int \left (-\frac {i e^{e^x+x}}{2 \sqrt {2} \left (i \sqrt {2}-x\right )}-\frac {i e^{e^x+x}}{2 \sqrt {2} \left (i \sqrt {2}+x\right )}\right ) \, dx+\frac {1}{2} \left (2-i \sqrt {2}\right ) \int \frac {e^{e^x+x}}{i \sqrt {2}+x} \, dx-\frac {1}{2} \left (2+i \sqrt {2}\right ) \int \frac {e^{e^x+x}}{i \sqrt {2}-x} \, dx-\int \frac {e^{e^x+x}}{\left (i \sqrt {2}-x\right )^2} \, dx-\int \frac {e^{e^x+2 x}}{i \sqrt {2}-x} \, dx-\int \frac {e^{e^x+x}}{\left (i \sqrt {2}+x\right )^2} \, dx+\int \frac {e^{e^x+2 x}}{i \sqrt {2}+x} \, dx\\ &=x-\frac {2 e^x \left (2 x+x^3\right )}{\left (2+x^2\right )^2}+\frac {i \int \frac {e^{e^x+x}}{i \sqrt {2}-x} \, dx}{\sqrt {2}}+\frac {i \int \frac {e^{e^x+x}}{i \sqrt {2}+x} \, dx}{\sqrt {2}}+\frac {1}{2} \left (2-i \sqrt {2}\right ) \int \frac {e^{e^x+x}}{i \sqrt {2}+x} \, dx-\frac {1}{2} \left (2+i \sqrt {2}\right ) \int \frac {e^{e^x+x}}{i \sqrt {2}-x} \, dx-\int \frac {e^{e^x+x}}{\left (i \sqrt {2}-x\right )^2} \, dx-\int \frac {e^{e^x+2 x}}{i \sqrt {2}-x} \, dx-\int \frac {e^{e^x+x}}{\left (i \sqrt {2}+x\right )^2} \, dx+\int \frac {e^{e^x+2 x}}{i \sqrt {2}+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.68, size = 28, normalized size = 0.93 \begin {gather*} \frac {x \left (2-2 e^x+2 e^{e^x+x}+x^2\right )}{2+x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 28, normalized size = 0.93 \begin {gather*} \frac {x^{3} + 2 \, x e^{\left (x + e^{x}\right )} - 2 \, x e^{x} + 2 \, x}{x^{2} + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{4} + 4 \, x^{2} - 2 \, {\left (x^{3} - x^{2} + 2 \, x + 2\right )} e^{x} + 2 \, {\left ({\left (x^{3} + 2 \, x\right )} e^{\left (2 \, x\right )} + {\left (x^{3} - x^{2} + 2 \, x + 2\right )} e^{x}\right )} e^{\left (e^{x}\right )} + 4}{x^{4} + 4 \, x^{2} + 4}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 29, normalized size = 0.97
method | result | size |
norman | \(\frac {x^{3}+2 x -2 \,{\mathrm e}^{x} x +2 x \,{\mathrm e}^{x} {\mathrm e}^{{\mathrm e}^{x}}}{x^{2}+2}\) | \(29\) |
risch | \(x -\frac {2 \,{\mathrm e}^{x} x}{x^{2}+2}+\frac {2 x \,{\mathrm e}^{{\mathrm e}^{x}+x}}{x^{2}+2}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.69, size = 24, normalized size = 0.80 \begin {gather*} x + \frac {2 \, {\left (x e^{\left (x + e^{x}\right )} - x e^{x}\right )}}{x^{2} + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.24, size = 29, normalized size = 0.97 \begin {gather*} x-\frac {2\,x\,{\mathrm {e}}^x}{x^2+2}+\frac {2\,x\,{\mathrm {e}}^{{\mathrm {e}}^x}\,{\mathrm {e}}^x}{x^2+2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 29, normalized size = 0.97 \begin {gather*} x + \frac {2 x e^{x} e^{e^{x}}}{x^{2} + 2} - \frac {2 x e^{x}}{x^{2} + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________