Optimal. Leaf size=30 \[ i \pi -x \left (x+e^{-4 e^x} x\right )+\log \left (-2+e^{e^{4 e}}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.38, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int e^{-4 e^x} \left (-2 x-2 e^{4 e^x} x+4 e^x x^2\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int 2 e^{-4 e^x} x \left (-1-e^{4 e^x}+2 e^x x\right ) \, dx\\ &=2 \int e^{-4 e^x} x \left (-1-e^{4 e^x}+2 e^x x\right ) \, dx\\ &=2 \int \left (-e^{-4 e^x} \left (1+e^{4 e^x}\right ) x+2 e^{-4 e^x+x} x^2\right ) \, dx\\ &=-\left (2 \int e^{-4 e^x} \left (1+e^{4 e^x}\right ) x \, dx\right )+4 \int e^{-4 e^x+x} x^2 \, dx\\ &=-\left (2 \int \left (1+e^{-4 e^x}\right ) x \, dx\right )+4 \int e^{-4 e^x+x} x^2 \, dx\\ &=-\left (2 \int \left (x+e^{-4 e^x} x\right ) \, dx\right )+4 \int e^{-4 e^x+x} x^2 \, dx\\ &=-x^2-2 \int e^{-4 e^x} x \, dx+4 \int e^{-4 e^x+x} x^2 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 14, normalized size = 0.47 \begin {gather*} -\left (\left (1+e^{-4 e^x}\right ) x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.16, size = 20, normalized size = 0.67 \begin {gather*} -{\left (x^{2} e^{\left (4 \, e^{x}\right )} + x^{2}\right )} e^{\left (-4 \, e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 24, normalized size = 0.80 \begin {gather*} -{\left (x^{2} e^{\left (x - 4 \, e^{x}\right )} + x^{2} e^{x}\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 17, normalized size = 0.57
method | result | size |
risch | \(-x^{2}-x^{2} {\mathrm e}^{-4 \,{\mathrm e}^{x}}\) | \(17\) |
norman | \(\left (-x^{2}-x^{2} {\mathrm e}^{4 \,{\mathrm e}^{x}}\right ) {\mathrm e}^{-4 \,{\mathrm e}^{x}}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 16, normalized size = 0.53 \begin {gather*} -x^{2} e^{\left (-4 \, e^{x}\right )} - x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.06, size = 12, normalized size = 0.40 \begin {gather*} -x^2\,\left ({\mathrm {e}}^{-4\,{\mathrm {e}}^x}+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 14, normalized size = 0.47 \begin {gather*} - x^{2} - x^{2} e^{- 4 e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________