Optimal. Leaf size=21 \[ \left (-2 x+\log \left (-2+e^x\right )\right ) \log \left (-x+4 x^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.15, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4 x+32 x^2+e^x \left (2 x-16 x^2\right )+\left (2-16 x+e^x (-1+8 x)\right ) \log \left (-2+e^x\right )+\left (-4 x+16 x^2+e^x \left (x-4 x^2\right )\right ) \log \left (-x+4 x^2\right )}{2 x-8 x^2+e^x \left (-x+4 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (-2+e^x\right ) (-1+8 x) \log \left (-2+e^x\right )-x \left (2 \left (-2+e^x\right ) (-1+8 x)+\left (-4+e^x\right ) (-1+4 x) \log (x (-1+4 x))\right )}{\left (2-e^x\right ) (1-4 x) x} \, dx\\ &=\int \left (\frac {2 \log (x (-1+4 x))}{-2+e^x}+\frac {2 x-16 x^2-\log \left (-2+e^x\right )+8 x \log \left (-2+e^x\right )+x \log (x (-1+4 x))-4 x^2 \log (x (-1+4 x))}{x (-1+4 x)}\right ) \, dx\\ &=2 \int \frac {\log (x (-1+4 x))}{-2+e^x} \, dx+\int \frac {2 x-16 x^2-\log \left (-2+e^x\right )+8 x \log \left (-2+e^x\right )+x \log (x (-1+4 x))-4 x^2 \log (x (-1+4 x))}{x (-1+4 x)} \, dx\\ &=2 \int \frac {\log (x (-1+4 x))}{-2+e^x} \, dx+\int \left (-\frac {(-1+8 x) \left (2 x-\log \left (-2+e^x\right )\right )}{x (-1+4 x)}-\log (x (-1+4 x))\right ) \, dx\\ &=2 \int \frac {\log (x (-1+4 x))}{-2+e^x} \, dx-\int \frac {(-1+8 x) \left (2 x-\log \left (-2+e^x\right )\right )}{x (-1+4 x)} \, dx-\int \log (x (-1+4 x)) \, dx\\ &=-x \log (-((1-4 x) x))+2 \int 1 \, dx+2 \int \frac {\log (x (-1+4 x))}{-2+e^x} \, dx+\int \frac {1}{-1+4 x} \, dx-\int \left (\frac {2 (-1+8 x)}{-1+4 x}-\frac {(-1+8 x) \log \left (-2+e^x\right )}{x (-1+4 x)}\right ) \, dx\\ &=2 x+\frac {1}{4} \log (1-4 x)-x \log (-((1-4 x) x))-2 \int \frac {-1+8 x}{-1+4 x} \, dx+2 \int \frac {\log (x (-1+4 x))}{-2+e^x} \, dx+\int \frac {(-1+8 x) \log \left (-2+e^x\right )}{x (-1+4 x)} \, dx\\ &=2 x+\frac {1}{4} \log (1-4 x)-x \log (-((1-4 x) x))-2 \int \left (2+\frac {1}{-1+4 x}\right ) \, dx+2 \int \frac {\log (x (-1+4 x))}{-2+e^x} \, dx+\int \left (\frac {\log \left (-2+e^x\right )}{x}+\frac {4 \log \left (-2+e^x\right )}{-1+4 x}\right ) \, dx\\ &=-2 x-\frac {1}{4} \log (1-4 x)-x \log (-((1-4 x) x))+2 \int \frac {\log (x (-1+4 x))}{-2+e^x} \, dx+4 \int \frac {\log \left (-2+e^x\right )}{-1+4 x} \, dx+\int \frac {\log \left (-2+e^x\right )}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.43, size = 27, normalized size = 1.29 \begin {gather*} -2 x \log (x (-1+4 x))+\log \left (-2+e^x\right ) \log (x (-1+4 x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 30, normalized size = 1.43 \begin {gather*} -2 \, x \log \left (4 \, x^{2} - x\right ) + \log \left (4 \, x^{2} - x\right ) \log \left (e^{x} - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.28, size = 30, normalized size = 1.43 \begin {gather*} -2 \, x \log \left (4 \, x^{2} - x\right ) + \log \left (4 \, x^{2} - x\right ) \log \left (e^{x} - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.03, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (8 x -1\right ) {\mathrm e}^{x}-16 x +2\right ) \ln \left ({\mathrm e}^{x}-2\right )+\left (\left (-4 x^{2}+x \right ) {\mathrm e}^{x}+16 x^{2}-4 x \right ) \ln \left (4 x^{2}-x \right )+\left (-16 x^{2}+2 x \right ) {\mathrm e}^{x}+32 x^{2}-4 x}{\left (4 x^{2}-x \right ) {\mathrm e}^{x}-8 x^{2}+2 x}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 30, normalized size = 1.43 \begin {gather*} -2 \, x \log \left (4 \, x - 1\right ) - 2 \, x \log \relax (x) + {\left (\log \left (4 \, x - 1\right ) + \log \relax (x)\right )} \log \left (e^{x} - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.32, size = 23, normalized size = 1.10 \begin {gather*} -\ln \left (4\,x^2-x\right )\,\left (2\,x-\ln \left ({\mathrm {e}}^x-2\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.64, size = 26, normalized size = 1.24 \begin {gather*} - 2 x \log {\left (4 x^{2} - x \right )} + \log {\left (4 x^{2} - x \right )} \log {\left (e^{x} - 2 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________