Optimal. Leaf size=23 \[ \left (2+2 x-e^x \left (1-\frac {e^5}{x}\right ) x\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.14, antiderivative size = 77, normalized size of antiderivative = 3.35, number of steps used = 21, number of rules used = 3, integrand size = 57, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.053, Rules used = {2196, 2194, 2176} \begin {gather*} -4 e^x x^2+e^{2 x} x^2+4 x^2-4 e^x x+8 x-4 e^{x+5}+e^{2 x+5}+e^{2 x+10}+4 e^{x+5} (x+2)-e^{2 x+5} (2 x+1) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=8 x+4 x^2+\int e^{2 x} \left (2 e^{10}+e^5 (-2-4 x)+2 x+2 x^2\right ) \, dx+\int e^x \left (-4-12 x-4 x^2+e^5 (8+4 x)\right ) \, dx\\ &=8 x+4 x^2+\int \left (-4 e^x-12 e^x x-4 e^x x^2+4 e^{5+x} (2+x)\right ) \, dx+\int \left (2 e^{10+2 x}+2 e^{2 x} x+2 e^{2 x} x^2-2 e^{5+2 x} (1+2 x)\right ) \, dx\\ &=8 x+4 x^2+2 \int e^{10+2 x} \, dx+2 \int e^{2 x} x \, dx+2 \int e^{2 x} x^2 \, dx-2 \int e^{5+2 x} (1+2 x) \, dx-4 \int e^x \, dx-4 \int e^x x^2 \, dx+4 \int e^{5+x} (2+x) \, dx-12 \int e^x x \, dx\\ &=-4 e^x+e^{10+2 x}+8 x-12 e^x x+e^{2 x} x+4 x^2-4 e^x x^2+e^{2 x} x^2+4 e^{5+x} (2+x)-e^{5+2 x} (1+2 x)+2 \int e^{5+2 x} \, dx-2 \int e^{2 x} x \, dx-4 \int e^{5+x} \, dx+8 \int e^x x \, dx+12 \int e^x \, dx-\int e^{2 x} \, dx\\ &=8 e^x-\frac {e^{2 x}}{2}-4 e^{5+x}+e^{5+2 x}+e^{10+2 x}+8 x-4 e^x x+4 x^2-4 e^x x^2+e^{2 x} x^2+4 e^{5+x} (2+x)-e^{5+2 x} (1+2 x)-8 \int e^x \, dx+\int e^{2 x} \, dx\\ &=-4 e^{5+x}+e^{5+2 x}+e^{10+2 x}+8 x-4 e^x x+4 x^2-4 e^x x^2+e^{2 x} x^2+4 e^{5+x} (2+x)-e^{5+2 x} (1+2 x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 39, normalized size = 1.70 \begin {gather*} e^{2 x} \left (e^5-x\right )^2+8 x+4 x^2+4 e^x \left (e^5-x\right ) (1+x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.76, size = 41, normalized size = 1.78 \begin {gather*} 4 \, x^{2} + {\left (x^{2} - 2 \, x e^{5} + e^{10}\right )} e^{\left (2 \, x\right )} - 4 \, {\left (x^{2} - {\left (x + 1\right )} e^{5} + x\right )} e^{x} + 8 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.15, size = 50, normalized size = 2.17 \begin {gather*} x^{2} e^{\left (2 \, x\right )} + 4 \, x^{2} - 2 \, x e^{\left (2 \, x + 5\right )} + 4 \, {\left (x + 1\right )} e^{\left (x + 5\right )} - 4 \, {\left (x^{2} + x\right )} e^{x} + 8 \, x + e^{\left (2 \, x + 10\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.05, size = 47, normalized size = 2.04
method | result | size |
risch | \(\left ({\mathrm e}^{10}-2 x \,{\mathrm e}^{5}+x^{2}\right ) {\mathrm e}^{2 x}+\left (4 x \,{\mathrm e}^{5}-4 x^{2}+4 \,{\mathrm e}^{5}-4 x \right ) {\mathrm e}^{x}+4 x^{2}+8 x\) | \(47\) |
norman | \({\mathrm e}^{10} {\mathrm e}^{2 x}+{\mathrm e}^{2 x} x^{2}+\left (4 \,{\mathrm e}^{5}-4\right ) x \,{\mathrm e}^{x}+8 x +4 x^{2}+4 \,{\mathrm e}^{5} {\mathrm e}^{x}-4 \,{\mathrm e}^{x} x^{2}-2 x \,{\mathrm e}^{5} {\mathrm e}^{2 x}\) | \(59\) |
default | \(8 x +{\mathrm e}^{2 x} x^{2}-{\mathrm e}^{5} {\mathrm e}^{2 x}+{\mathrm e}^{10} {\mathrm e}^{2 x}-4 \,{\mathrm e}^{5} \left (\frac {x \,{\mathrm e}^{2 x}}{2}-\frac {{\mathrm e}^{2 x}}{4}\right )-4 \,{\mathrm e}^{x} x -4 \,{\mathrm e}^{x} x^{2}+8 \,{\mathrm e}^{5} {\mathrm e}^{x}+4 \,{\mathrm e}^{5} \left ({\mathrm e}^{x} x -{\mathrm e}^{x}\right )+4 x^{2}\) | \(84\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.38, size = 44, normalized size = 1.91 \begin {gather*} 4 \, x^{2} + {\left (x^{2} - 2 \, x e^{5} + e^{10}\right )} e^{\left (2 \, x\right )} - 4 \, {\left (x^{2} - x {\left (e^{5} - 1\right )} - e^{5}\right )} e^{x} + 8 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 55, normalized size = 2.39 \begin {gather*} 8\,x+4\,{\mathrm {e}}^{x+5}+{\mathrm {e}}^{2\,x+10}-4\,x^2\,{\mathrm {e}}^x-2\,x\,{\mathrm {e}}^{2\,x+5}+x^2\,{\mathrm {e}}^{2\,x}+4\,x^2+x\,{\mathrm {e}}^x\,\left (4\,{\mathrm {e}}^5-4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.15, size = 49, normalized size = 2.13 \begin {gather*} 4 x^{2} + 8 x + \left (x^{2} - 2 x e^{5} + e^{10}\right ) e^{2 x} + \left (- 4 x^{2} - 4 x + 4 x e^{5} + 4 e^{5}\right ) e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________