Optimal. Leaf size=32 \[ e+25 \log ^2\left (2 x \left (e^5+\frac {x}{-\frac {e^x}{3-x}+x}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 28.22, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (50 e^{5+2 x}+450 x^2-300 x^3+50 x^4+e^5 \left (450 x^2-300 x^3+50 x^4\right )+e^x \left (-300 x+300 x^2-50 x^3+e^5 \left (-300 x+100 x^2\right )\right )\right ) \log \left (\frac {2 e^{5+x} x-6 x^2+2 x^3+e^5 \left (-6 x^2+2 x^3\right )}{e^x-3 x+x^2}\right )}{e^{5+2 x} x+9 x^3-6 x^4+x^5+e^5 \left (9 x^3-6 x^4+x^5\right )+e^x \left (-3 x^2+x^3+e^5 \left (-6 x^2+2 x^3\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {50 \left (e^{5+2 x}+2 e^{5+x} (-3+x) x+\left (1+e^5\right ) (-3+x)^2 x^2-e^x x \left (6-6 x+x^2\right )\right ) \log \left (\frac {2 x \left (e^{5+x}+\left (1+e^5\right ) (-3+x) x\right )}{e^x+(-3+x) x}\right )}{x \left (e^{5+2 x}+e^x \left (1+2 e^5\right ) (-3+x) x+\left (1+e^5\right ) (-3+x)^2 x^2\right )} \, dx\\ &=50 \int \frac {\left (e^{5+2 x}+2 e^{5+x} (-3+x) x+\left (1+e^5\right ) (-3+x)^2 x^2-e^x x \left (6-6 x+x^2\right )\right ) \log \left (\frac {2 x \left (e^{5+x}+\left (1+e^5\right ) (-3+x) x\right )}{e^x+(-3+x) x}\right )}{x \left (e^{5+2 x}+e^x \left (1+2 e^5\right ) (-3+x) x+\left (1+e^5\right ) (-3+x)^2 x^2\right )} \, dx\\ &=50 \int \left (\frac {\log \left (\frac {2 x \left (e^{5+x}+\left (1+e^5\right ) (-3+x) x\right )}{e^x+(-3+x) x}\right )}{x}+\frac {\left (3-5 x+x^2\right ) \log \left (\frac {2 x \left (e^{5+x}+\left (1+e^5\right ) (-3+x) x\right )}{e^x+(-3+x) x}\right )}{e^x-3 x+x^2}+\frac {\left (1+e^5\right ) \left (-3+5 x-x^2\right ) \log \left (\frac {2 x \left (e^{5+x}+\left (1+e^5\right ) (-3+x) x\right )}{e^x+(-3+x) x}\right )}{e^{5+x}-3 \left (1+e^5\right ) x+\left (1+e^5\right ) x^2}\right ) \, dx\\ &=50 \int \frac {\log \left (\frac {2 x \left (e^{5+x}+\left (1+e^5\right ) (-3+x) x\right )}{e^x+(-3+x) x}\right )}{x} \, dx+50 \int \frac {\left (3-5 x+x^2\right ) \log \left (\frac {2 x \left (e^{5+x}+\left (1+e^5\right ) (-3+x) x\right )}{e^x+(-3+x) x}\right )}{e^x-3 x+x^2} \, dx+\left (50 \left (1+e^5\right )\right ) \int \frac {\left (-3+5 x-x^2\right ) \log \left (\frac {2 x \left (e^{5+x}+\left (1+e^5\right ) (-3+x) x\right )}{e^x+(-3+x) x}\right )}{e^{5+x}-3 \left (1+e^5\right ) x+\left (1+e^5\right ) x^2} \, dx\\ &=50 \int \frac {\log \left (\frac {2 x \left (e^{5+x}+\left (1+e^5\right ) (-3+x) x\right )}{e^x+(-3+x) x}\right )}{x} \, dx-50 \int \frac {\left (e^{5+2 x}+2 e^{5+x} (-3+x) x+\left (1+e^5\right ) (-3+x)^2 x^2-e^x x \left (6-6 x+x^2\right )\right ) \left (3 \int \frac {1}{e^x+(-3+x) x} \, dx-5 \int \frac {x}{e^x+(-3+x) x} \, dx+\int \frac {x^2}{e^x+(-3+x) x} \, dx\right )}{x \left (e^x+(-3+x) x\right ) \left (e^{5+x}+\left (1+e^5\right ) (-3+x) x\right )} \, dx-\left (50 \left (1+e^5\right )\right ) \int \frac {\left (e^{5+2 x}+2 e^{5+x} (-3+x) x+\left (1+e^5\right ) (-3+x)^2 x^2-e^x x \left (6-6 x+x^2\right )\right ) \left (3 \int -\frac {1}{e^{5+x}+(-3+x) x+e^5 (-3+x) x} \, dx+\int -\frac {x^2}{e^{5+x}+(-3+x) x+e^5 (-3+x) x} \, dx+5 \int \frac {x}{e^{5+x}+\left (1+e^5\right ) (-3+x) x} \, dx\right )}{x \left (e^x+(-3+x) x\right ) \left (e^{5+x}+\left (1+e^5\right ) (-3+x) x\right )} \, dx+\left (50 \log \left (\frac {2 x \left (e^{5+x}+\left (1+e^5\right ) (-3+x) x\right )}{e^x+(-3+x) x}\right )\right ) \int \frac {x^2}{e^x-3 x+x^2} \, dx+\left (150 \log \left (\frac {2 x \left (e^{5+x}+\left (1+e^5\right ) (-3+x) x\right )}{e^x+(-3+x) x}\right )\right ) \int \frac {1}{e^x-3 x+x^2} \, dx-\left (250 \log \left (\frac {2 x \left (e^{5+x}+\left (1+e^5\right ) (-3+x) x\right )}{e^x+(-3+x) x}\right )\right ) \int \frac {x}{e^x-3 x+x^2} \, dx+\left (50 \left (1+e^5\right ) \log \left (\frac {2 x \left (e^{5+x}+\left (1+e^5\right ) (-3+x) x\right )}{e^x+(-3+x) x}\right )\right ) \int \frac {x^2}{-e^{5+x}+3 \left (1+e^5\right ) x-\left (1+e^5\right ) x^2} \, dx+\left (150 \left (1+e^5\right ) \log \left (\frac {2 x \left (e^{5+x}+\left (1+e^5\right ) (-3+x) x\right )}{e^x+(-3+x) x}\right )\right ) \int \frac {1}{-e^{5+x}+3 \left (1+e^5\right ) x-\left (1+e^5\right ) x^2} \, dx+\left (250 \left (1+e^5\right ) \log \left (\frac {2 x \left (e^{5+x}+\left (1+e^5\right ) (-3+x) x\right )}{e^x+(-3+x) x}\right )\right ) \int \frac {x}{e^{5+x}+\left (1+e^5\right ) (-3+x) x} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 38, normalized size = 1.19 \begin {gather*} 25 \log ^2\left (\frac {2 x \left (e^{5+x}+(-3+x) x+e^5 (-3+x) x\right )}{e^x+(-3+x) x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 55, normalized size = 1.72 \begin {gather*} 25 \, \log \left (\frac {2 \, {\left ({\left (x^{3} - 3 \, x^{2}\right )} e^{10} + {\left (x^{3} - 3 \, x^{2}\right )} e^{5} + x e^{\left (x + 10\right )}\right )}}{{\left (x^{2} - 3 \, x\right )} e^{5} + e^{\left (x + 5\right )}}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {50 \, {\left (x^{4} - 6 \, x^{3} + 9 \, x^{2} + {\left (x^{4} - 6 \, x^{3} + 9 \, x^{2}\right )} e^{5} - {\left (x^{3} - 6 \, x^{2} - 2 \, {\left (x^{2} - 3 \, x\right )} e^{5} + 6 \, x\right )} e^{x} + e^{\left (2 \, x + 5\right )}\right )} \log \left (\frac {2 \, {\left (x^{3} - 3 \, x^{2} + {\left (x^{3} - 3 \, x^{2}\right )} e^{5} + x e^{\left (x + 5\right )}\right )}}{x^{2} - 3 \, x + e^{x}}\right )}{x^{5} - 6 \, x^{4} + 9 \, x^{3} + {\left (x^{5} - 6 \, x^{4} + 9 \, x^{3}\right )} e^{5} + x e^{\left (2 \, x + 5\right )} + {\left (x^{3} - 3 \, x^{2} + 2 \, {\left (x^{3} - 3 \, x^{2}\right )} e^{5}\right )} e^{x}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.85, size = 1811, normalized size = 56.59
method | result | size |
risch | \(25 \ln \relax (x )^{2}+50 \ln \relax (2) \ln \relax (x )-25 i \pi \ln \left ({\mathrm e}^{x}+x \left (x \,{\mathrm e}^{5}-3 \,{\mathrm e}^{5}+x -3\right ) {\mathrm e}^{-5}\right ) \mathrm {csgn}\left (\frac {i x \left (\left ({\mathrm e}^{x}+x^{2}-3 x \right ) {\mathrm e}^{5}+x^{2}-3 x \right )}{{\mathrm e}^{x}+x^{2}-3 x}\right )^{3}-25 i \pi \ln \left ({\mathrm e}^{x}+x \left (x \,{\mathrm e}^{5}-3 \,{\mathrm e}^{5}+x -3\right ) {\mathrm e}^{-5}\right ) \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{x}+x^{2}-3 x \right ) {\mathrm e}^{5}+x^{2}-3 x \right )}{{\mathrm e}^{x}+x^{2}-3 x}\right )^{3}-25 i \pi \ln \relax (x ) \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{x}+x^{2}-3 x \right ) {\mathrm e}^{5}+x^{2}-3 x \right )}{{\mathrm e}^{x}+x^{2}-3 x}\right )^{3}-25 i \pi \ln \relax (x ) \mathrm {csgn}\left (\frac {i x \left (\left ({\mathrm e}^{x}+x^{2}-3 x \right ) {\mathrm e}^{5}+x^{2}-3 x \right )}{{\mathrm e}^{x}+x^{2}-3 x}\right )^{3}+25 i \pi \ln \left ({\mathrm e}^{x}+x^{2}-3 x \right ) \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{x}+x^{2}-3 x \right ) {\mathrm e}^{5}+x^{2}-3 x \right )}{{\mathrm e}^{x}+x^{2}-3 x}\right )^{3}+25 i \pi \ln \left ({\mathrm e}^{x}+x^{2}-3 x \right ) \mathrm {csgn}\left (\frac {i x \left (\left ({\mathrm e}^{x}+x^{2}-3 x \right ) {\mathrm e}^{5}+x^{2}-3 x \right )}{{\mathrm e}^{x}+x^{2}-3 x}\right )^{3}-50 \ln \relax (x ) \ln \left ({\mathrm e}^{x}+x^{2}-3 x \right )+\left (50 \ln \relax (x )-50 \ln \left ({\mathrm e}^{x}+x^{2}-3 x \right )\right ) \ln \left (\left ({\mathrm e}^{x}+x^{2}-3 x \right ) {\mathrm e}^{5}+x^{2}-3 x \right )-50 \ln \relax (2) \ln \left ({\mathrm e}^{x}+x^{2}-3 x \right )+25 \ln \left (\left ({\mathrm e}^{x}+x^{2}-3 x \right ) {\mathrm e}^{5}+x^{2}-3 x \right )^{2}+25 \ln \left ({\mathrm e}^{x}+x^{2}-3 x \right )^{2}+50 \ln \relax (2) \ln \left ({\mathrm e}^{x}+x \left (x \,{\mathrm e}^{5}-3 \,{\mathrm e}^{5}+x -3\right ) {\mathrm e}^{-5}\right )+25 i \pi \ln \relax (x ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i x \left (\left ({\mathrm e}^{x}+x^{2}-3 x \right ) {\mathrm e}^{5}+x^{2}-3 x \right )}{{\mathrm e}^{x}+x^{2}-3 x}\right )^{2}+25 i \pi \ln \relax (x ) \mathrm {csgn}\left (i \left (\left ({\mathrm e}^{x}+x^{2}-3 x \right ) {\mathrm e}^{5}+x^{2}-3 x \right )\right ) \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{x}+x^{2}-3 x \right ) {\mathrm e}^{5}+x^{2}-3 x \right )}{{\mathrm e}^{x}+x^{2}-3 x}\right )^{2}-25 i \pi \ln \relax (x ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{x}+x^{2}-3 x \right ) {\mathrm e}^{5}+x^{2}-3 x \right )}{{\mathrm e}^{x}+x^{2}-3 x}\right ) \mathrm {csgn}\left (\frac {i x \left (\left ({\mathrm e}^{x}+x^{2}-3 x \right ) {\mathrm e}^{5}+x^{2}-3 x \right )}{{\mathrm e}^{x}+x^{2}-3 x}\right )-25 i \pi \ln \relax (x ) \mathrm {csgn}\left (i \left (\left ({\mathrm e}^{x}+x^{2}-3 x \right ) {\mathrm e}^{5}+x^{2}-3 x \right )\right ) \mathrm {csgn}\left (\frac {i}{{\mathrm e}^{x}+x^{2}-3 x}\right ) \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{x}+x^{2}-3 x \right ) {\mathrm e}^{5}+x^{2}-3 x \right )}{{\mathrm e}^{x}+x^{2}-3 x}\right )+25 i \pi \ln \left ({\mathrm e}^{x}+x^{2}-3 x \right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{x}+x^{2}-3 x \right ) {\mathrm e}^{5}+x^{2}-3 x \right )}{{\mathrm e}^{x}+x^{2}-3 x}\right ) \mathrm {csgn}\left (\frac {i x \left (\left ({\mathrm e}^{x}+x^{2}-3 x \right ) {\mathrm e}^{5}+x^{2}-3 x \right )}{{\mathrm e}^{x}+x^{2}-3 x}\right )+25 i \pi \ln \left ({\mathrm e}^{x}+x^{2}-3 x \right ) \mathrm {csgn}\left (i \left (\left ({\mathrm e}^{x}+x^{2}-3 x \right ) {\mathrm e}^{5}+x^{2}-3 x \right )\right ) \mathrm {csgn}\left (\frac {i}{{\mathrm e}^{x}+x^{2}-3 x}\right ) \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{x}+x^{2}-3 x \right ) {\mathrm e}^{5}+x^{2}-3 x \right )}{{\mathrm e}^{x}+x^{2}-3 x}\right )+25 i \pi \ln \relax (x ) \mathrm {csgn}\left (\frac {i}{{\mathrm e}^{x}+x^{2}-3 x}\right ) \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{x}+x^{2}-3 x \right ) {\mathrm e}^{5}+x^{2}-3 x \right )}{{\mathrm e}^{x}+x^{2}-3 x}\right )^{2}+25 i \pi \ln \relax (x ) \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{x}+x^{2}-3 x \right ) {\mathrm e}^{5}+x^{2}-3 x \right )}{{\mathrm e}^{x}+x^{2}-3 x}\right ) \mathrm {csgn}\left (\frac {i x \left (\left ({\mathrm e}^{x}+x^{2}-3 x \right ) {\mathrm e}^{5}+x^{2}-3 x \right )}{{\mathrm e}^{x}+x^{2}-3 x}\right )^{2}+25 i \pi \ln \left ({\mathrm e}^{x}+x \left (x \,{\mathrm e}^{5}-3 \,{\mathrm e}^{5}+x -3\right ) {\mathrm e}^{-5}\right ) \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{x}+x^{2}-3 x \right ) {\mathrm e}^{5}+x^{2}-3 x \right )}{{\mathrm e}^{x}+x^{2}-3 x}\right ) \mathrm {csgn}\left (\frac {i x \left (\left ({\mathrm e}^{x}+x^{2}-3 x \right ) {\mathrm e}^{5}+x^{2}-3 x \right )}{{\mathrm e}^{x}+x^{2}-3 x}\right )^{2}-25 i \pi \ln \left ({\mathrm e}^{x}+x^{2}-3 x \right ) \mathrm {csgn}\left (i \left (\left ({\mathrm e}^{x}+x^{2}-3 x \right ) {\mathrm e}^{5}+x^{2}-3 x \right )\right ) \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{x}+x^{2}-3 x \right ) {\mathrm e}^{5}+x^{2}-3 x \right )}{{\mathrm e}^{x}+x^{2}-3 x}\right )^{2}-25 i \pi \ln \left ({\mathrm e}^{x}+x^{2}-3 x \right ) \mathrm {csgn}\left (\frac {i}{{\mathrm e}^{x}+x^{2}-3 x}\right ) \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{x}+x^{2}-3 x \right ) {\mathrm e}^{5}+x^{2}-3 x \right )}{{\mathrm e}^{x}+x^{2}-3 x}\right )^{2}+25 i \pi \ln \left ({\mathrm e}^{x}+x \left (x \,{\mathrm e}^{5}-3 \,{\mathrm e}^{5}+x -3\right ) {\mathrm e}^{-5}\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i x \left (\left ({\mathrm e}^{x}+x^{2}-3 x \right ) {\mathrm e}^{5}+x^{2}-3 x \right )}{{\mathrm e}^{x}+x^{2}-3 x}\right )^{2}+25 i \pi \ln \left ({\mathrm e}^{x}+x \left (x \,{\mathrm e}^{5}-3 \,{\mathrm e}^{5}+x -3\right ) {\mathrm e}^{-5}\right ) \mathrm {csgn}\left (\frac {i}{{\mathrm e}^{x}+x^{2}-3 x}\right ) \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{x}+x^{2}-3 x \right ) {\mathrm e}^{5}+x^{2}-3 x \right )}{{\mathrm e}^{x}+x^{2}-3 x}\right )^{2}-25 i \pi \ln \left ({\mathrm e}^{x}+x^{2}-3 x \right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i x \left (\left ({\mathrm e}^{x}+x^{2}-3 x \right ) {\mathrm e}^{5}+x^{2}-3 x \right )}{{\mathrm e}^{x}+x^{2}-3 x}\right )^{2}+25 i \pi \ln \left ({\mathrm e}^{x}+x \left (x \,{\mathrm e}^{5}-3 \,{\mathrm e}^{5}+x -3\right ) {\mathrm e}^{-5}\right ) \mathrm {csgn}\left (i \left (\left ({\mathrm e}^{x}+x^{2}-3 x \right ) {\mathrm e}^{5}+x^{2}-3 x \right )\right ) \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{x}+x^{2}-3 x \right ) {\mathrm e}^{5}+x^{2}-3 x \right )}{{\mathrm e}^{x}+x^{2}-3 x}\right )^{2}-25 i \pi \ln \left ({\mathrm e}^{x}+x \left (x \,{\mathrm e}^{5}-3 \,{\mathrm e}^{5}+x -3\right ) {\mathrm e}^{-5}\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{x}+x^{2}-3 x \right ) {\mathrm e}^{5}+x^{2}-3 x \right )}{{\mathrm e}^{x}+x^{2}-3 x}\right ) \mathrm {csgn}\left (\frac {i x \left (\left ({\mathrm e}^{x}+x^{2}-3 x \right ) {\mathrm e}^{5}+x^{2}-3 x \right )}{{\mathrm e}^{x}+x^{2}-3 x}\right )-25 i \pi \ln \left ({\mathrm e}^{x}+x \left (x \,{\mathrm e}^{5}-3 \,{\mathrm e}^{5}+x -3\right ) {\mathrm e}^{-5}\right ) \mathrm {csgn}\left (i \left (\left ({\mathrm e}^{x}+x^{2}-3 x \right ) {\mathrm e}^{5}+x^{2}-3 x \right )\right ) \mathrm {csgn}\left (\frac {i}{{\mathrm e}^{x}+x^{2}-3 x}\right ) \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{x}+x^{2}-3 x \right ) {\mathrm e}^{5}+x^{2}-3 x \right )}{{\mathrm e}^{x}+x^{2}-3 x}\right )-25 i \pi \ln \left ({\mathrm e}^{x}+x^{2}-3 x \right ) \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{x}+x^{2}-3 x \right ) {\mathrm e}^{5}+x^{2}-3 x \right )}{{\mathrm e}^{x}+x^{2}-3 x}\right ) \mathrm {csgn}\left (\frac {i x \left (\left ({\mathrm e}^{x}+x^{2}-3 x \right ) {\mathrm e}^{5}+x^{2}-3 x \right )}{{\mathrm e}^{x}+x^{2}-3 x}\right )^{2}\) | \(1811\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.47, size = 189, normalized size = 5.91 \begin {gather*} 50 \, {\left (\log \left (x^{2} - 3 \, x + e^{x}\right ) - \log \relax (x) + 5\right )} \log \left (x^{2} {\left (e^{5} + 1\right )} - 3 \, x {\left (e^{5} + 1\right )} + e^{\left (x + 5\right )}\right ) - 25 \, \log \left (x^{2} {\left (e^{5} + 1\right )} - 3 \, x {\left (e^{5} + 1\right )} + e^{\left (x + 5\right )}\right )^{2} + 50 \, {\left (\log \relax (x) - 5\right )} \log \left (x^{2} - 3 \, x + e^{x}\right ) - 25 \, \log \left (x^{2} - 3 \, x + e^{x}\right )^{2} - 25 \, \log \relax (x)^{2} - 50 \, {\left (\log \left (x^{2} - 3 \, x + e^{x}\right ) - \log \left ({\left (x^{2} {\left (e^{5} + 1\right )} - 3 \, x {\left (e^{5} + 1\right )} + e^{\left (x + 5\right )}\right )} e^{\left (-5\right )}\right ) - \log \relax (x)\right )} \log \left (\frac {2 \, {\left (x^{3} - 3 \, x^{2} + {\left (x^{3} - 3 \, x^{2}\right )} e^{5} + x e^{\left (x + 5\right )}\right )}}{x^{2} - 3 \, x + e^{x}}\right ) + 250 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.93, size = 50, normalized size = 1.56 \begin {gather*} 25\,{\ln \left (-\frac {{\mathrm {e}}^5\,\left (6\,x^2-2\,x^3\right )+6\,x^2-2\,x^3-2\,x\,{\mathrm {e}}^5\,{\mathrm {e}}^x}{{\mathrm {e}}^x-3\,x+x^2}\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.00, size = 48, normalized size = 1.50 \begin {gather*} 25 \log {\left (\frac {2 x^{3} - 6 x^{2} + 2 x e^{5} e^{x} + \left (2 x^{3} - 6 x^{2}\right ) e^{5}}{x^{2} - 3 x + e^{x}} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________