Optimal. Leaf size=28 \[ 4-\frac {\log \left (4-\frac {5}{8-x}-x\right )}{e^x-x} \]
________________________________________________________________________________________
Rubi [F] time = 30.23, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {69 x-16 x^2+x^3+e^x \left (-69+16 x-x^2\right )+\left (216-123 x+20 x^2-x^3+e^x \left (-216+123 x-20 x^2+x^3\right )\right ) \log \left (\frac {-27+12 x-x^2}{-8+x}\right )}{-216 x^2+123 x^3-20 x^4+x^5+e^{2 x} \left (-216+123 x-20 x^2+x^3\right )+e^x \left (432 x-246 x^2+40 x^3-2 x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-\frac {\left (e^x-x\right ) \left (69-16 x+x^2\right )}{-216+123 x-20 x^2+x^3}+\left (-1+e^x\right ) \log \left (-\frac {27-12 x+x^2}{-8+x}\right )}{\left (e^x-x\right )^2} \, dx\\ &=\int \left (\frac {(-1+x) \log \left (-\frac {27-12 x+x^2}{-8+x}\right )}{\left (e^x-x\right )^2}+\frac {-69+16 x-x^2-216 \log \left (-\frac {27-12 x+x^2}{-8+x}\right )+123 x \log \left (-\frac {27-12 x+x^2}{-8+x}\right )-20 x^2 \log \left (-\frac {27-12 x+x^2}{-8+x}\right )+x^3 \log \left (-\frac {27-12 x+x^2}{-8+x}\right )}{\left (e^x-x\right ) (-9+x) (-8+x) (-3+x)}\right ) \, dx\\ &=\int \frac {(-1+x) \log \left (-\frac {27-12 x+x^2}{-8+x}\right )}{\left (e^x-x\right )^2} \, dx+\int \frac {-69+16 x-x^2-216 \log \left (-\frac {27-12 x+x^2}{-8+x}\right )+123 x \log \left (-\frac {27-12 x+x^2}{-8+x}\right )-20 x^2 \log \left (-\frac {27-12 x+x^2}{-8+x}\right )+x^3 \log \left (-\frac {27-12 x+x^2}{-8+x}\right )}{\left (e^x-x\right ) (-9+x) (-8+x) (-3+x)} \, dx\\ &=-\left (\log \left (-\frac {27-12 x+x^2}{-8+x}\right ) \int \frac {1}{\left (e^x-x\right )^2} \, dx\right )+\log \left (-\frac {27-12 x+x^2}{-8+x}\right ) \int \frac {x}{\left (e^x-x\right )^2} \, dx+\int \frac {69-16 x+x^2-\left (-216+123 x-20 x^2+x^3\right ) \log \left (-\frac {27-12 x+x^2}{-8+x}\right )}{(3-x) (8-x) (9-x) \left (e^x-x\right )} \, dx-\int \frac {\left (69-16 x+x^2\right ) \left (\int \frac {1}{\left (e^x-x\right )^2} \, dx-\int \frac {x}{\left (e^x-x\right )^2} \, dx\right )}{(8-x) \left (27-12 x+x^2\right )} \, dx\\ &=-\left (\log \left (-\frac {27-12 x+x^2}{-8+x}\right ) \int \frac {1}{\left (e^x-x\right )^2} \, dx\right )+\log \left (-\frac {27-12 x+x^2}{-8+x}\right ) \int \frac {x}{\left (e^x-x\right )^2} \, dx+\int \left (\frac {-69+16 x-x^2-216 \log \left (-\frac {27-12 x+x^2}{-8+x}\right )+123 x \log \left (-\frac {27-12 x+x^2}{-8+x}\right )-20 x^2 \log \left (-\frac {27-12 x+x^2}{-8+x}\right )+x^3 \log \left (-\frac {27-12 x+x^2}{-8+x}\right )}{6 \left (e^x-x\right ) (-9+x)}-\frac {-69+16 x-x^2-216 \log \left (-\frac {27-12 x+x^2}{-8+x}\right )+123 x \log \left (-\frac {27-12 x+x^2}{-8+x}\right )-20 x^2 \log \left (-\frac {27-12 x+x^2}{-8+x}\right )+x^3 \log \left (-\frac {27-12 x+x^2}{-8+x}\right )}{5 \left (e^x-x\right ) (-8+x)}+\frac {-69+16 x-x^2-216 \log \left (-\frac {27-12 x+x^2}{-8+x}\right )+123 x \log \left (-\frac {27-12 x+x^2}{-8+x}\right )-20 x^2 \log \left (-\frac {27-12 x+x^2}{-8+x}\right )+x^3 \log \left (-\frac {27-12 x+x^2}{-8+x}\right )}{30 \left (e^x-x\right ) (-3+x)}\right ) \, dx-\int \left (-\frac {\left (69-16 x+x^2\right ) \int \frac {1}{\left (e^x-x\right )^2} \, dx}{(-9+x) (-8+x) (-3+x)}+\frac {\left (69-16 x+x^2\right ) \int \frac {x}{\left (e^x-x\right )^2} \, dx}{(-9+x) (-8+x) (-3+x)}\right ) \, dx\\ &=\frac {1}{30} \int \frac {-69+16 x-x^2-216 \log \left (-\frac {27-12 x+x^2}{-8+x}\right )+123 x \log \left (-\frac {27-12 x+x^2}{-8+x}\right )-20 x^2 \log \left (-\frac {27-12 x+x^2}{-8+x}\right )+x^3 \log \left (-\frac {27-12 x+x^2}{-8+x}\right )}{\left (e^x-x\right ) (-3+x)} \, dx+\frac {1}{6} \int \frac {-69+16 x-x^2-216 \log \left (-\frac {27-12 x+x^2}{-8+x}\right )+123 x \log \left (-\frac {27-12 x+x^2}{-8+x}\right )-20 x^2 \log \left (-\frac {27-12 x+x^2}{-8+x}\right )+x^3 \log \left (-\frac {27-12 x+x^2}{-8+x}\right )}{\left (e^x-x\right ) (-9+x)} \, dx-\frac {1}{5} \int \frac {-69+16 x-x^2-216 \log \left (-\frac {27-12 x+x^2}{-8+x}\right )+123 x \log \left (-\frac {27-12 x+x^2}{-8+x}\right )-20 x^2 \log \left (-\frac {27-12 x+x^2}{-8+x}\right )+x^3 \log \left (-\frac {27-12 x+x^2}{-8+x}\right )}{\left (e^x-x\right ) (-8+x)} \, dx-\log \left (-\frac {27-12 x+x^2}{-8+x}\right ) \int \frac {1}{\left (e^x-x\right )^2} \, dx+\log \left (-\frac {27-12 x+x^2}{-8+x}\right ) \int \frac {x}{\left (e^x-x\right )^2} \, dx+\int \frac {\left (69-16 x+x^2\right ) \int \frac {1}{\left (e^x-x\right )^2} \, dx}{(-9+x) (-8+x) (-3+x)} \, dx-\int \frac {\left (69-16 x+x^2\right ) \int \frac {x}{\left (e^x-x\right )^2} \, dx}{(-9+x) (-8+x) (-3+x)} \, dx\\ &=\frac {1}{30} \int \frac {69-16 x+x^2-\left (-216+123 x-20 x^2+x^3\right ) \log \left (-\frac {27-12 x+x^2}{-8+x}\right )}{(3-x) \left (e^x-x\right )} \, dx+\frac {1}{6} \int \frac {69-16 x+x^2-\left (-216+123 x-20 x^2+x^3\right ) \log \left (-\frac {27-12 x+x^2}{-8+x}\right )}{(9-x) \left (e^x-x\right )} \, dx-\frac {1}{5} \int \frac {69-16 x+x^2-\left (-216+123 x-20 x^2+x^3\right ) \log \left (-\frac {27-12 x+x^2}{-8+x}\right )}{(8-x) \left (e^x-x\right )} \, dx-\log \left (-\frac {27-12 x+x^2}{-8+x}\right ) \int \frac {1}{\left (e^x-x\right )^2} \, dx+\log \left (-\frac {27-12 x+x^2}{-8+x}\right ) \int \frac {x}{\left (e^x-x\right )^2} \, dx+\int \left (\frac {\int \frac {1}{\left (e^x-x\right )^2} \, dx}{-9+x}-\frac {\int \frac {1}{\left (e^x-x\right )^2} \, dx}{-8+x}+\frac {\int \frac {1}{\left (e^x-x\right )^2} \, dx}{-3+x}\right ) \, dx-\int \left (\frac {\int \frac {x}{\left (e^x-x\right )^2} \, dx}{-9+x}-\frac {\int \frac {x}{\left (e^x-x\right )^2} \, dx}{-8+x}+\frac {\int \frac {x}{\left (e^x-x\right )^2} \, dx}{-3+x}\right ) \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.43, size = 27, normalized size = 0.96 \begin {gather*} -\frac {\log \left (-\frac {27-12 x+x^2}{-8+x}\right )}{e^x-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.07, size = 25, normalized size = 0.89 \begin {gather*} \frac {\log \left (-\frac {x^{2} - 12 \, x + 27}{x - 8}\right )}{x - e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 25, normalized size = 0.89 \begin {gather*} \frac {\log \left (-\frac {x^{2} - 12 \, x + 27}{x - 8}\right )}{x - e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.18, size = 196, normalized size = 7.00
method | result | size |
risch | \(\frac {\ln \left (x^{2}-12 x +27\right )}{x -{\mathrm e}^{x}}-\frac {i \pi \,\mathrm {csgn}\left (\frac {i}{-8+x}\right ) \mathrm {csgn}\left (i \left (x^{2}-12 x +27\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}-12 x +27\right )}{-8+x}\right )-i \pi \,\mathrm {csgn}\left (\frac {i}{-8+x}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}-12 x +27\right )}{-8+x}\right )^{2}-i \pi \,\mathrm {csgn}\left (i \left (x^{2}-12 x +27\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}-12 x +27\right )}{-8+x}\right )^{2}-i \pi \mathrm {csgn}\left (\frac {i \left (x^{2}-12 x +27\right )}{-8+x}\right )^{3}+2 i \pi \mathrm {csgn}\left (\frac {i \left (x^{2}-12 x +27\right )}{-8+x}\right )^{2}-2 i \pi +2 \ln \left (-8+x \right )}{2 \left (x -{\mathrm e}^{x}\right )}\) | \(196\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 26, normalized size = 0.93 \begin {gather*} \frac {\log \left (x - 3\right ) - \log \left (x - 8\right ) + \log \left (-x + 9\right )}{x - e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.29, size = 25, normalized size = 0.89 \begin {gather*} \frac {\ln \left (-\frac {x^2-12\,x+27}{x-8}\right )}{x-{\mathrm {e}}^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.42, size = 19, normalized size = 0.68 \begin {gather*} - \frac {\log {\left (\frac {- x^{2} + 12 x - 27}{x - 8} \right )}}{- x + e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________