Optimal. Leaf size=21 \[ \frac {x^2 (3+x) \left (-e^x+x\right )}{2 \log (9)} \]
________________________________________________________________________________________
Rubi [B] time = 0.10, antiderivative size = 51, normalized size of antiderivative = 2.43, number of steps used = 14, number of rules used = 5, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.135, Rules used = {12, 1594, 2196, 2176, 2194} \begin {gather*} \frac {x^4}{2 \log (9)}-\frac {e^x x^3}{2 \log (9)}+\frac {3 x^3}{2 \log (9)}-\frac {3 e^x x^2}{2 \log (9)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1594
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (9 x^2+4 x^3+e^x \left (-6 x-6 x^2-x^3\right )\right ) \, dx}{2 \log (9)}\\ &=\frac {3 x^3}{2 \log (9)}+\frac {x^4}{2 \log (9)}+\frac {\int e^x \left (-6 x-6 x^2-x^3\right ) \, dx}{2 \log (9)}\\ &=\frac {3 x^3}{2 \log (9)}+\frac {x^4}{2 \log (9)}+\frac {\int e^x x \left (-6-6 x-x^2\right ) \, dx}{2 \log (9)}\\ &=\frac {3 x^3}{2 \log (9)}+\frac {x^4}{2 \log (9)}+\frac {\int \left (-6 e^x x-6 e^x x^2-e^x x^3\right ) \, dx}{2 \log (9)}\\ &=\frac {3 x^3}{2 \log (9)}+\frac {x^4}{2 \log (9)}-\frac {\int e^x x^3 \, dx}{2 \log (9)}-\frac {3 \int e^x x \, dx}{\log (9)}-\frac {3 \int e^x x^2 \, dx}{\log (9)}\\ &=-\frac {3 e^x x}{\log (9)}-\frac {3 e^x x^2}{\log (9)}+\frac {3 x^3}{2 \log (9)}-\frac {e^x x^3}{2 \log (9)}+\frac {x^4}{2 \log (9)}+\frac {3 \int e^x x^2 \, dx}{2 \log (9)}+\frac {3 \int e^x \, dx}{\log (9)}+\frac {6 \int e^x x \, dx}{\log (9)}\\ &=\frac {3 e^x}{\log (9)}+\frac {3 e^x x}{\log (9)}-\frac {3 e^x x^2}{2 \log (9)}+\frac {3 x^3}{2 \log (9)}-\frac {e^x x^3}{2 \log (9)}+\frac {x^4}{2 \log (9)}-\frac {3 \int e^x x \, dx}{\log (9)}-\frac {6 \int e^x \, dx}{\log (9)}\\ &=-\frac {3 e^x}{\log (9)}-\frac {3 e^x x^2}{2 \log (9)}+\frac {3 x^3}{2 \log (9)}-\frac {e^x x^3}{2 \log (9)}+\frac {x^4}{2 \log (9)}+\frac {3 \int e^x \, dx}{\log (9)}\\ &=-\frac {3 e^x x^2}{2 \log (9)}+\frac {3 x^3}{2 \log (9)}-\frac {e^x x^3}{2 \log (9)}+\frac {x^4}{2 \log (9)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 19, normalized size = 0.90 \begin {gather*} -\frac {\left (e^x-x\right ) x^2 (3+x)}{\log (81)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.99, size = 28, normalized size = 1.33 \begin {gather*} \frac {x^{4} + 3 \, x^{3} - {\left (x^{3} + 3 \, x^{2}\right )} e^{x}}{4 \, \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 28, normalized size = 1.33 \begin {gather*} \frac {x^{4} + 3 \, x^{3} - {\left (x^{3} + 3 \, x^{2}\right )} e^{x}}{4 \, \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 30, normalized size = 1.43
method | result | size |
default | \(\frac {-3 \,{\mathrm e}^{x} x^{2}-{\mathrm e}^{x} x^{3}+3 x^{3}+x^{4}}{4 \ln \relax (3)}\) | \(30\) |
risch | \(\frac {x^{4}}{4 \ln \relax (3)}+\frac {3 x^{3}}{4 \ln \relax (3)}+\frac {\left (-x^{3}-3 x^{2}\right ) {\mathrm e}^{x}}{4 \ln \relax (3)}\) | \(39\) |
norman | \(\frac {3 x^{3}}{4 \ln \relax (3)}+\frac {x^{4}}{4 \ln \relax (3)}-\frac {3 x^{2} {\mathrm e}^{x}}{4 \ln \relax (3)}-\frac {x^{3} {\mathrm e}^{x}}{4 \ln \relax (3)}\) | \(42\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 28, normalized size = 1.33 \begin {gather*} \frac {x^{4} + 3 \, x^{3} - {\left (x^{3} + 3 \, x^{2}\right )} e^{x}}{4 \, \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.05, size = 30, normalized size = 1.43 \begin {gather*} -\frac {3\,x^2\,{\mathrm {e}}^x+x^3\,{\mathrm {e}}^x-3\,x^3-x^4}{4\,\ln \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.12, size = 36, normalized size = 1.71 \begin {gather*} \frac {x^{4}}{4 \log {\relax (3 )}} + \frac {3 x^{3}}{4 \log {\relax (3 )}} + \frac {\left (- x^{3} - 3 x^{2}\right ) e^{x}}{4 \log {\relax (3 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________