3.66.76 \(\int e^{16+e^{16+8 e^x+e^{2 x}}+8 e^x+e^{2 x}} (8 e^x+2 e^{2 x}) \, dx\)

Optimal. Leaf size=13 \[ e^{e^{\left (-4-e^x\right )^2}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.19, antiderivative size = 11, normalized size of antiderivative = 0.85, number of steps used = 6, number of rules used = 4, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {2282, 12, 6715, 2194} \begin {gather*} e^{e^{\left (e^x+4\right )^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[E^(16 + E^(16 + 8*E^x + E^(2*x)) + 8*E^x + E^(2*x))*(8*E^x + 2*E^(2*x)),x]

[Out]

E^E^(4 + E^x)^2

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2282

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 6715

Int[(u_)*(x_)^(m_.), x_Symbol] :> Dist[1/(m + 1), Subst[Int[SubstFor[x^(m + 1), u, x], x], x, x^(m + 1)], x] /
; FreeQ[m, x] && NeQ[m, -1] && FunctionOfQ[x^(m + 1), u, x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\operatorname {Subst}\left (\int 2 e^{e^{(4+x)^2}+(4+x)^2} (4+x) \, dx,x,e^x\right )\\ &=2 \operatorname {Subst}\left (\int e^{e^{(4+x)^2}+(4+x)^2} (4+x) \, dx,x,e^x\right )\\ &=2 \operatorname {Subst}\left (\int e^{e^{x^2}+x^2} x \, dx,x,4+e^x\right )\\ &=\operatorname {Subst}\left (\int e^{e^x+x} \, dx,x,\left (4+e^x\right )^2\right )\\ &=\operatorname {Subst}\left (\int e^x \, dx,x,e^{\left (4+e^x\right )^2}\right )\\ &=e^{e^{\left (4+e^x\right )^2}}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.13, size = 11, normalized size = 0.85 \begin {gather*} e^{e^{\left (4+e^x\right )^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[E^(16 + E^(16 + 8*E^x + E^(2*x)) + 8*E^x + E^(2*x))*(8*E^x + 2*E^(2*x)),x]

[Out]

E^E^(4 + E^x)^2

________________________________________________________________________________________

fricas [A]  time = 0.64, size = 12, normalized size = 0.92 \begin {gather*} e^{\left (e^{\left (e^{\left (2 \, x\right )} + 8 \, e^{x} + 16\right )}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*exp(x)^2+8*exp(x))*exp(exp(x)^2+8*exp(x)+16)*exp(exp(exp(x)^2+8*exp(x)+16)),x, algorithm="fricas"
)

[Out]

e^(e^(e^(2*x) + 8*e^x + 16))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int 2 \, {\left (e^{\left (2 \, x\right )} + 4 \, e^{x}\right )} e^{\left (e^{\left (2 \, x\right )} + 8 \, e^{x} + e^{\left (e^{\left (2 \, x\right )} + 8 \, e^{x} + 16\right )} + 16\right )}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*exp(x)^2+8*exp(x))*exp(exp(x)^2+8*exp(x)+16)*exp(exp(exp(x)^2+8*exp(x)+16)),x, algorithm="giac")

[Out]

integrate(2*(e^(2*x) + 4*e^x)*e^(e^(2*x) + 8*e^x + e^(e^(2*x) + 8*e^x + 16) + 16), x)

________________________________________________________________________________________

maple [A]  time = 0.16, size = 13, normalized size = 1.00




method result size



derivativedivides \({\mathrm e}^{{\mathrm e}^{{\mathrm e}^{2 x}+8 \,{\mathrm e}^{x}+16}}\) \(13\)
norman \({\mathrm e}^{{\mathrm e}^{{\mathrm e}^{2 x}+8 \,{\mathrm e}^{x}+16}}\) \(13\)
risch \({\mathrm e}^{{\mathrm e}^{{\mathrm e}^{2 x}+8 \,{\mathrm e}^{x}+16}}\) \(13\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*exp(x)^2+8*exp(x))*exp(exp(x)^2+8*exp(x)+16)*exp(exp(exp(x)^2+8*exp(x)+16)),x,method=_RETURNVERBOSE)

[Out]

exp(exp(exp(x)^2+8*exp(x)+16))

________________________________________________________________________________________

maxima [A]  time = 0.58, size = 12, normalized size = 0.92 \begin {gather*} e^{\left (e^{\left (e^{\left (2 \, x\right )} + 8 \, e^{x} + 16\right )}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*exp(x)^2+8*exp(x))*exp(exp(x)^2+8*exp(x)+16)*exp(exp(exp(x)^2+8*exp(x)+16)),x, algorithm="maxima"
)

[Out]

e^(e^(e^(2*x) + 8*e^x + 16))

________________________________________________________________________________________

mupad [B]  time = 0.12, size = 14, normalized size = 1.08 \begin {gather*} {\mathrm {e}}^{{\mathrm {e}}^{16}\,{\mathrm {e}}^{{\mathrm {e}}^{2\,x}}\,{\mathrm {e}}^{8\,{\mathrm {e}}^x}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(exp(2*x) + 8*exp(x) + 16)*exp(exp(exp(2*x) + 8*exp(x) + 16))*(2*exp(2*x) + 8*exp(x)),x)

[Out]

exp(exp(16)*exp(exp(2*x))*exp(8*exp(x)))

________________________________________________________________________________________

sympy [A]  time = 0.30, size = 14, normalized size = 1.08 \begin {gather*} e^{e^{e^{2 x} + 8 e^{x} + 16}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*exp(x)**2+8*exp(x))*exp(exp(x)**2+8*exp(x)+16)*exp(exp(exp(x)**2+8*exp(x)+16)),x)

[Out]

exp(exp(exp(2*x) + 8*exp(x) + 16))

________________________________________________________________________________________