Optimal. Leaf size=13 \[ e^{e^{\left (-4-e^x\right )^2}} \]
________________________________________________________________________________________
Rubi [A] time = 0.19, antiderivative size = 11, normalized size of antiderivative = 0.85, number of steps used = 6, number of rules used = 4, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {2282, 12, 6715, 2194} \begin {gather*} e^{e^{\left (e^x+4\right )^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rule 2282
Rule 6715
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\operatorname {Subst}\left (\int 2 e^{e^{(4+x)^2}+(4+x)^2} (4+x) \, dx,x,e^x\right )\\ &=2 \operatorname {Subst}\left (\int e^{e^{(4+x)^2}+(4+x)^2} (4+x) \, dx,x,e^x\right )\\ &=2 \operatorname {Subst}\left (\int e^{e^{x^2}+x^2} x \, dx,x,4+e^x\right )\\ &=\operatorname {Subst}\left (\int e^{e^x+x} \, dx,x,\left (4+e^x\right )^2\right )\\ &=\operatorname {Subst}\left (\int e^x \, dx,x,e^{\left (4+e^x\right )^2}\right )\\ &=e^{e^{\left (4+e^x\right )^2}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 11, normalized size = 0.85 \begin {gather*} e^{e^{\left (4+e^x\right )^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 12, normalized size = 0.92 \begin {gather*} e^{\left (e^{\left (e^{\left (2 \, x\right )} + 8 \, e^{x} + 16\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int 2 \, {\left (e^{\left (2 \, x\right )} + 4 \, e^{x}\right )} e^{\left (e^{\left (2 \, x\right )} + 8 \, e^{x} + e^{\left (e^{\left (2 \, x\right )} + 8 \, e^{x} + 16\right )} + 16\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 13, normalized size = 1.00
method | result | size |
derivativedivides | \({\mathrm e}^{{\mathrm e}^{{\mathrm e}^{2 x}+8 \,{\mathrm e}^{x}+16}}\) | \(13\) |
norman | \({\mathrm e}^{{\mathrm e}^{{\mathrm e}^{2 x}+8 \,{\mathrm e}^{x}+16}}\) | \(13\) |
risch | \({\mathrm e}^{{\mathrm e}^{{\mathrm e}^{2 x}+8 \,{\mathrm e}^{x}+16}}\) | \(13\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.58, size = 12, normalized size = 0.92 \begin {gather*} e^{\left (e^{\left (e^{\left (2 \, x\right )} + 8 \, e^{x} + 16\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.12, size = 14, normalized size = 1.08 \begin {gather*} {\mathrm {e}}^{{\mathrm {e}}^{16}\,{\mathrm {e}}^{{\mathrm {e}}^{2\,x}}\,{\mathrm {e}}^{8\,{\mathrm {e}}^x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 14, normalized size = 1.08 \begin {gather*} e^{e^{e^{2 x} + 8 e^{x} + 16}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________