Optimal. Leaf size=27 \[ 4+e^{x^4}-4 \left (e^x+x\right ) \left (3+\frac {1}{2} x \left (e^5+\log (x)\right )\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.08, antiderivative size = 75, normalized size of antiderivative = 2.78, number of steps used = 10, number of rules used = 7, integrand size = 52, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.135, Rules used = {6, 2187, 2176, 2194, 2209, 2554, 12} \begin {gather*} e^{x^4}-\left (1+2 e^5\right ) x^2+x^2-2 x^2 \log (x)-12 x+2 e^x+2 e^{x+5}-2 e^x \left (e^5 x+e^5+7\right )+2 e^x \log (x)-2 e^x (x+1) \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 2176
Rule 2187
Rule 2194
Rule 2209
Rule 2554
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-12+e^x \left (-14+e^5 (-2-2 x)\right )+\left (-2-4 e^5\right ) x+4 e^{x^4} x^3+\left (e^x (-2-2 x)-4 x\right ) \log (x)\right ) \, dx\\ &=-12 x-\left (1+2 e^5\right ) x^2+4 \int e^{x^4} x^3 \, dx+\int e^x \left (-14+e^5 (-2-2 x)\right ) \, dx+\int \left (e^x (-2-2 x)-4 x\right ) \log (x) \, dx\\ &=e^{x^4}-12 x-\left (1+2 e^5\right ) x^2+2 e^x \log (x)-2 x^2 \log (x)-2 e^x (1+x) \log (x)-\int 2 \left (-e^x-x\right ) \, dx+\int e^x \left (-2 \left (7+e^5\right )-2 e^5 x\right ) \, dx\\ &=e^{x^4}-12 x-\left (1+2 e^5\right ) x^2-2 e^x \left (7+e^5+e^5 x\right )+2 e^x \log (x)-2 x^2 \log (x)-2 e^x (1+x) \log (x)-2 \int \left (-e^x-x\right ) \, dx+\left (2 e^5\right ) \int e^x \, dx\\ &=e^{x^4}+2 e^{5+x}-12 x+x^2-\left (1+2 e^5\right ) x^2-2 e^x \left (7+e^5+e^5 x\right )+2 e^x \log (x)-2 x^2 \log (x)-2 e^x (1+x) \log (x)+2 \int e^x \, dx\\ &=2 e^x+e^{x^4}+2 e^{5+x}-12 x+x^2-\left (1+2 e^5\right ) x^2-2 e^x \left (7+e^5+e^5 x\right )+2 e^x \log (x)-2 x^2 \log (x)-2 e^x (1+x) \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 43, normalized size = 1.59 \begin {gather*} -2 \left (6 e^x-\frac {e^{x^4}}{2}+6 x+e^{5+x} x+e^5 x^2+x \left (e^x+x\right ) \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 37, normalized size = 1.37 \begin {gather*} -2 \, x^{2} e^{5} - 2 \, {\left (x e^{5} + 6\right )} e^{x} - 2 \, {\left (x^{2} + x e^{x}\right )} \log \relax (x) - 12 \, x + e^{\left (x^{4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.39, size = 38, normalized size = 1.41 \begin {gather*} -2 \, x^{2} e^{5} - 2 \, x e^{\left (x + 5\right )} - 2 \, {\left (x^{2} + x e^{x}\right )} \log \relax (x) - 12 \, x + e^{\left (x^{4}\right )} - 12 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 41, normalized size = 1.52
method | result | size |
risch | \(-2 x \,{\mathrm e}^{5+x}-2 x^{2} {\mathrm e}^{5}-2 x \,{\mathrm e}^{x} \ln \relax (x )-2 x^{2} \ln \relax (x )-12 \,{\mathrm e}^{x}+{\mathrm e}^{x^{4}}-12 x\) | \(41\) |
default | \(-12 x -2 \,{\mathrm e}^{5} {\mathrm e}^{x}-2 \,{\mathrm e}^{5} \left ({\mathrm e}^{x} x -{\mathrm e}^{x}\right )-12 \,{\mathrm e}^{x}-2 x \,{\mathrm e}^{x} \ln \relax (x )-2 x^{2} \ln \relax (x )-2 x^{2} {\mathrm e}^{5}+{\mathrm e}^{x^{4}}\) | \(53\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 41, normalized size = 1.52 \begin {gather*} -2 \, x^{2} e^{5} - 2 \, {\left (x e^{5} + 7\right )} e^{x} - 2 \, {\left (x^{2} + x e^{x}\right )} \log \relax (x) - 12 \, x + e^{\left (x^{4}\right )} + 2 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.72, size = 40, normalized size = 1.48 \begin {gather*} {\mathrm {e}}^{x^4}-12\,x-12\,{\mathrm {e}}^x-2\,x\,{\mathrm {e}}^{x+5}-2\,x^2\,\ln \relax (x)-2\,x^2\,{\mathrm {e}}^5-2\,x\,{\mathrm {e}}^x\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.44, size = 44, normalized size = 1.63 \begin {gather*} - 2 x^{2} \log {\relax (x )} - 2 x^{2} e^{5} - 12 x + \left (- 2 x \log {\relax (x )} - 2 x e^{5} - 12\right ) e^{x} + e^{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________