Optimal. Leaf size=24 \[ \left (-5+\frac {5 x^2}{\log \left (2+\frac {x}{15+\frac {1}{x}+x}\right )}\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 4.95, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-100 x^5-750 x^6+\left (300 x^3+6750 x^4+45500 x^5+7500 x^6+300 x^7\right ) \log \left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )+\left (-200 x-6000 x^2-45500 x^3-7500 x^4-300 x^5\right ) \log ^2\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )}{\left (2+60 x+455 x^2+75 x^3+3 x^4\right ) \log ^3\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {50 x^5 (2+15 x)}{\left (1+15 x+x^2\right ) \left (2+30 x+3 x^2\right ) \log ^3\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )}+\frac {50 x^3 \left (6+135 x+910 x^2+150 x^3+6 x^4\right )}{\left (1+15 x+x^2\right ) \left (2+30 x+3 x^2\right ) \log ^2\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )}-\frac {100 x}{\log \left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )}\right ) \, dx\\ &=-\left (50 \int \frac {x^5 (2+15 x)}{\left (1+15 x+x^2\right ) \left (2+30 x+3 x^2\right ) \log ^3\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )} \, dx\right )+50 \int \frac {x^3 \left (6+135 x+910 x^2+150 x^3+6 x^4\right )}{\left (1+15 x+x^2\right ) \left (2+30 x+3 x^2\right ) \log ^2\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )} \, dx-100 \int \frac {x}{\log \left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )} \, dx\\ &=-\left (50 \int \left (\frac {2350}{\log ^3\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )}-\frac {373 x}{3 \log ^3\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )}+\frac {5 x^2}{\log ^3\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )}+\frac {-3330-49727 x}{\left (1+15 x+x^2\right ) \log ^3\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )}+\frac {8 (735+10951 x)}{3 \left (2+30 x+3 x^2\right ) \log ^3\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )}\right ) \, dx\right )+50 \int \left (\frac {5}{\log ^2\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )}+\frac {2 x^3}{\log ^2\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )}+\frac {-15-223 x}{\left (1+15 x+x^2\right ) \log ^2\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )}+\frac {4 (5+74 x)}{\left (2+30 x+3 x^2\right ) \log ^2\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )}\right ) \, dx-100 \int \frac {x}{\log \left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )} \, dx\\ &=-\left (50 \int \frac {-3330-49727 x}{\left (1+15 x+x^2\right ) \log ^3\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )} \, dx\right )+50 \int \frac {-15-223 x}{\left (1+15 x+x^2\right ) \log ^2\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )} \, dx+100 \int \frac {x^3}{\log ^2\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )} \, dx-100 \int \frac {x}{\log \left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )} \, dx-\frac {400}{3} \int \frac {735+10951 x}{\left (2+30 x+3 x^2\right ) \log ^3\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )} \, dx+200 \int \frac {5+74 x}{\left (2+30 x+3 x^2\right ) \log ^2\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )} \, dx-250 \int \frac {x^2}{\log ^3\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )} \, dx+250 \int \frac {1}{\log ^2\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )} \, dx+\frac {18650}{3} \int \frac {x}{\log ^3\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )} \, dx-117500 \int \frac {1}{\log ^3\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )} \, dx\\ &=-\left (50 \int \left (-\frac {3330}{\left (1+15 x+x^2\right ) \log ^3\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )}-\frac {49727 x}{\left (1+15 x+x^2\right ) \log ^3\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )}\right ) \, dx\right )+50 \int \left (-\frac {15}{\left (1+15 x+x^2\right ) \log ^2\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )}-\frac {223 x}{\left (1+15 x+x^2\right ) \log ^2\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )}\right ) \, dx+100 \int \frac {x^3}{\log ^2\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )} \, dx-100 \int \frac {x}{\log \left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )} \, dx-\frac {400}{3} \int \left (\frac {735}{\left (2+30 x+3 x^2\right ) \log ^3\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )}+\frac {10951 x}{\left (2+30 x+3 x^2\right ) \log ^3\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )}\right ) \, dx+200 \int \left (\frac {5}{\left (2+30 x+3 x^2\right ) \log ^2\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )}+\frac {74 x}{\left (2+30 x+3 x^2\right ) \log ^2\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )}\right ) \, dx-250 \int \frac {x^2}{\log ^3\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )} \, dx+250 \int \frac {1}{\log ^2\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )} \, dx+\frac {18650}{3} \int \frac {x}{\log ^3\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )} \, dx-117500 \int \frac {1}{\log ^3\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )} \, dx\\ &=100 \int \frac {x^3}{\log ^2\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )} \, dx-100 \int \frac {x}{\log \left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )} \, dx-250 \int \frac {x^2}{\log ^3\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )} \, dx+250 \int \frac {1}{\log ^2\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )} \, dx-750 \int \frac {1}{\left (1+15 x+x^2\right ) \log ^2\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )} \, dx+1000 \int \frac {1}{\left (2+30 x+3 x^2\right ) \log ^2\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )} \, dx+\frac {18650}{3} \int \frac {x}{\log ^3\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )} \, dx-11150 \int \frac {x}{\left (1+15 x+x^2\right ) \log ^2\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )} \, dx+14800 \int \frac {x}{\left (2+30 x+3 x^2\right ) \log ^2\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )} \, dx-98000 \int \frac {1}{\left (2+30 x+3 x^2\right ) \log ^3\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )} \, dx-117500 \int \frac {1}{\log ^3\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )} \, dx+166500 \int \frac {1}{\left (1+15 x+x^2\right ) \log ^3\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )} \, dx-\frac {4380400}{3} \int \frac {x}{\left (2+30 x+3 x^2\right ) \log ^3\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )} \, dx+2486350 \int \frac {x}{\left (1+15 x+x^2\right ) \log ^3\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.08, size = 63, normalized size = 2.62 \begin {gather*} 50 \left (\frac {x^4}{2 \log ^2\left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )}-\frac {x^2}{\log \left (\frac {2+30 x+3 x^2}{1+15 x+x^2}\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.54, size = 57, normalized size = 2.38 \begin {gather*} \frac {25 \, {\left (x^{4} - 2 \, x^{2} \log \left (\frac {3 \, x^{2} + 30 \, x + 2}{x^{2} + 15 \, x + 1}\right )\right )}}{\log \left (\frac {3 \, x^{2} + 30 \, x + 2}{x^{2} + 15 \, x + 1}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.61, size = 57, normalized size = 2.38 \begin {gather*} \frac {25 \, {\left (x^{4} - 2 \, x^{2} \log \left (\frac {3 \, x^{2} + 30 \, x + 2}{x^{2} + 15 \, x + 1}\right )\right )}}{\log \left (\frac {3 \, x^{2} + 30 \, x + 2}{x^{2} + 15 \, x + 1}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.05, size = 58, normalized size = 2.42
method | result | size |
risch | \(\frac {25 \left (x^{2}-2 \ln \left (\frac {3 x^{2}+30 x +2}{x^{2}+15 x +1}\right )\right ) x^{2}}{\ln \left (\frac {3 x^{2}+30 x +2}{x^{2}+15 x +1}\right )^{2}}\) | \(58\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.50, size = 85, normalized size = 3.54 \begin {gather*} \frac {25 \, {\left (x^{4} - 2 \, x^{2} \log \left (3 \, x^{2} + 30 \, x + 2\right ) + 2 \, x^{2} \log \left (x^{2} + 15 \, x + 1\right )\right )}}{\log \left (3 \, x^{2} + 30 \, x + 2\right )^{2} - 2 \, \log \left (3 \, x^{2} + 30 \, x + 2\right ) \log \left (x^{2} + 15 \, x + 1\right ) + \log \left (x^{2} + 15 \, x + 1\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.98, size = 113, normalized size = 4.71 \begin {gather*} \frac {2531672218\,\ln \left (\frac {3\,x^2+30\,x+2}{x^2+15\,x+1}\right )}{50625}+\frac {25\,x^4-50\,x^2\,\ln \left (\frac {3\,x^2+30\,x+2}{x^2+15\,x+1}\right )}{{\ln \left (\frac {3\,x^2+30\,x+2}{x^2+15\,x+1}\right )}^2}+\frac {\mathrm {atan}\left (\frac {x^2\,371{}\mathrm {i}+x\,2250{}\mathrm {i}+150{}\mathrm {i}}{955\,x^2+11010\,x+734}\right )\,5063344436{}\mathrm {i}}{50625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.24, size = 51, normalized size = 2.12 \begin {gather*} \frac {25 x^{4} - 50 x^{2} \log {\left (\frac {3 x^{2} + 30 x + 2}{x^{2} + 15 x + 1} \right )}}{\log {\left (\frac {3 x^{2} + 30 x + 2}{x^{2} + 15 x + 1} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________