3.67.3
Optimal. Leaf size=25
________________________________________________________________________________________
Rubi [A] time = 4.81, antiderivative size = 23, normalized size of antiderivative = 0.92,
number of steps used = 4, number of rules used = 4, integrand size = 108, = 0.037, Rules used
= {1593, 6741, 6688, 6706}
Antiderivative was successfully verified.
[In]
Int[(E^((45 + (25*x^2 + 10*x^3 + x^4)*Log[(19 + x)/3])/(x^2*Log[(19 + x)/3]))*(-45*x + (-1710 - 90*x)*Log[(19
+ x)/3] + (190*x^3 + 48*x^4 + 2*x^5)*Log[(19 + x)/3]^2))/((19*x^3 + x^4)*Log[(19 + x)/3]^2),x]
[Out]
E^((5 + x)^2 + 45/(x^2*Log[(19 + x)/3]))
Rule 1593
Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^(q - p))^n, x] /; F
reeQ[{a, b, p, q}, x] && IntegerQ[n] && PosQ[q - p]
Rule 6688
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]
Rule 6706
Int[(F_)^(v_)*(u_), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Simp[(q*F^v)/Log[F], x] /; !FalseQ[q]
] /; FreeQ[F, x]
Rule 6741
Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 25, normalized size = 1.00
Antiderivative was successfully verified.
[In]
Integrate[(E^((45 + (25*x^2 + 10*x^3 + x^4)*Log[(19 + x)/3])/(x^2*Log[(19 + x)/3]))*(-45*x + (-1710 - 90*x)*Lo
g[(19 + x)/3] + (190*x^3 + 48*x^4 + 2*x^5)*Log[(19 + x)/3]^2))/((19*x^3 + x^4)*Log[(19 + x)/3]^2),x]
[Out]
E^(25 + 10*x + x^2 + 45/(x^2*Log[(19 + x)/3]))
________________________________________________________________________________________
fricas [A] time = 0.58, size = 36, normalized size = 1.44
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x^5+48*x^4+190*x^3)*log(1/3*x+19/3)^2+(-90*x-1710)*log(1/3*x+19/3)-45*x)*exp(((x^4+10*x^3+25*x^2
)*log(1/3*x+19/3)+45)/x^2/log(1/3*x+19/3))/(x^4+19*x^3)/log(1/3*x+19/3)^2,x, algorithm="fricas")
[Out]
e^(((x^4 + 10*x^3 + 25*x^2)*log(1/3*x + 19/3) + 45)/(x^2*log(1/3*x + 19/3)))
________________________________________________________________________________________
giac [A] time = 1.98, size = 22, normalized size = 0.88
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x^5+48*x^4+190*x^3)*log(1/3*x+19/3)^2+(-90*x-1710)*log(1/3*x+19/3)-45*x)*exp(((x^4+10*x^3+25*x^2
)*log(1/3*x+19/3)+45)/x^2/log(1/3*x+19/3))/(x^4+19*x^3)/log(1/3*x+19/3)^2,x, algorithm="giac")
[Out]
e^(x^2 + 10*x + 45/(x^2*log(1/3*x + 19/3)) + 25)
________________________________________________________________________________________
maple [B] time = 0.44, size = 48, normalized size = 1.92
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((2*x^5+48*x^4+190*x^3)*ln(1/3*x+19/3)^2+(-90*x-1710)*ln(1/3*x+19/3)-45*x)*exp(((x^4+10*x^3+25*x^2)*ln(1/3
*x+19/3)+45)/x^2/ln(1/3*x+19/3))/(x^4+19*x^3)/ln(1/3*x+19/3)^2,x,method=_RETURNVERBOSE)
[Out]
exp((ln(1/3*x+19/3)*x^4+10*ln(1/3*x+19/3)*x^3+25*x^2*ln(1/3*x+19/3)+45)/x^2/ln(1/3*x+19/3))
________________________________________________________________________________________
maxima [A] time = 0.68, size = 25, normalized size = 1.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x^5+48*x^4+190*x^3)*log(1/3*x+19/3)^2+(-90*x-1710)*log(1/3*x+19/3)-45*x)*exp(((x^4+10*x^3+25*x^2
)*log(1/3*x+19/3)+45)/x^2/log(1/3*x+19/3))/(x^4+19*x^3)/log(1/3*x+19/3)^2,x, algorithm="maxima")
[Out]
e^(x^2 + 10*x - 45/(x^2*(log(3) - log(x + 19))) + 25)
________________________________________________________________________________________
mupad [B] time = 4.48, size = 25, normalized size = 1.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(exp((log(x/3 + 19/3)*(25*x^2 + 10*x^3 + x^4) + 45)/(x^2*log(x/3 + 19/3)))*(45*x + log(x/3 + 19/3)*(90*x
+ 1710) - log(x/3 + 19/3)^2*(190*x^3 + 48*x^4 + 2*x^5)))/(log(x/3 + 19/3)^2*(19*x^3 + x^4)),x)
[Out]
exp(10*x)*exp(x^2)*exp(25)*exp(45/(x^2*log(x/3 + 19/3)))
________________________________________________________________________________________
sympy [A] time = 0.48, size = 36, normalized size = 1.44
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x**5+48*x**4+190*x**3)*ln(1/3*x+19/3)**2+(-90*x-1710)*ln(1/3*x+19/3)-45*x)*exp(((x**4+10*x**3+25
*x**2)*ln(1/3*x+19/3)+45)/x**2/ln(1/3*x+19/3))/(x**4+19*x**3)/ln(1/3*x+19/3)**2,x)
[Out]
exp(((x**4 + 10*x**3 + 25*x**2)*log(x/3 + 19/3) + 45)/(x**2*log(x/3 + 19/3)))
________________________________________________________________________________________