Optimal. Leaf size=29 \[ -25-x+\frac {x (3+\log (3))}{-x+\frac {4}{\log \left (5-\frac {10 x}{9}\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 0.90, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {144-8 x+8 x \log (3)+\left (-108-48 x+16 x^2+(-36+8 x) \log (3)\right ) \log \left (\frac {1}{9} (45-10 x)\right )+\left (9 x^2-2 x^3\right ) \log ^2\left (\frac {1}{9} (45-10 x)\right )}{-144+32 x+\left (72 x-16 x^2\right ) \log \left (\frac {1}{9} (45-10 x)\right )+\left (-9 x^2+2 x^3\right ) \log ^2\left (\frac {1}{9} (45-10 x)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {144+x (-8+8 \log (3))+\left (-108-48 x+16 x^2+(-36+8 x) \log (3)\right ) \log \left (\frac {1}{9} (45-10 x)\right )+\left (9 x^2-2 x^3\right ) \log ^2\left (\frac {1}{9} (45-10 x)\right )}{-144+32 x+\left (72 x-16 x^2\right ) \log \left (\frac {1}{9} (45-10 x)\right )+\left (-9 x^2+2 x^3\right ) \log ^2\left (\frac {1}{9} (45-10 x)\right )} \, dx\\ &=\int \frac {-144-8 x (-1+\log (3))-4 (-9+2 x) (3+2 x+\log (3)) \log \left (5-\frac {10 x}{9}\right )-(9-2 x) x^2 \log ^2\left (5-\frac {10 x}{9}\right )}{(9-2 x) \left (4-x \log \left (5-\frac {10 x}{9}\right )\right )^2} \, dx\\ &=\int \left (-1+\frac {8 \left (-18+4 x+x^2\right ) (3+\log (3))}{x (-9+2 x) \left (-4+x \log \left (5-\frac {10 x}{9}\right )\right )^2}+\frac {4 (3+\log (3))}{x \left (-4+x \log \left (5-\frac {10 x}{9}\right )\right )}\right ) \, dx\\ &=-x+(4 (3+\log (3))) \int \frac {1}{x \left (-4+x \log \left (5-\frac {10 x}{9}\right )\right )} \, dx+(8 (3+\log (3))) \int \frac {-18+4 x+x^2}{x (-9+2 x) \left (-4+x \log \left (5-\frac {10 x}{9}\right )\right )^2} \, dx\\ &=-x+(4 (3+\log (3))) \int \frac {1}{x \left (-4+x \log \left (5-\frac {10 x}{9}\right )\right )} \, dx+(8 (3+\log (3))) \int \left (\frac {1}{2 \left (-4+x \log \left (5-\frac {10 x}{9}\right )\right )^2}+\frac {2}{x \left (-4+x \log \left (5-\frac {10 x}{9}\right )\right )^2}+\frac {9}{2 (-9+2 x) \left (-4+x \log \left (5-\frac {10 x}{9}\right )\right )^2}\right ) \, dx\\ &=-x+(4 (3+\log (3))) \int \frac {1}{\left (-4+x \log \left (5-\frac {10 x}{9}\right )\right )^2} \, dx+(4 (3+\log (3))) \int \frac {1}{x \left (-4+x \log \left (5-\frac {10 x}{9}\right )\right )} \, dx+(16 (3+\log (3))) \int \frac {1}{x \left (-4+x \log \left (5-\frac {10 x}{9}\right )\right )^2} \, dx+(36 (3+\log (3))) \int \frac {1}{(-9+2 x) \left (-4+x \log \left (5-\frac {10 x}{9}\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.38, size = 24, normalized size = 0.83 \begin {gather*} -x-\frac {4 (3+\log (3))}{-4+x \log \left (5-\frac {10 x}{9}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 33, normalized size = 1.14 \begin {gather*} -\frac {x^{2} \log \left (-\frac {10}{9} \, x + 5\right ) - 4 \, x + 4 \, \log \relax (3) + 12}{x \log \left (-\frac {10}{9} \, x + 5\right ) - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 28, normalized size = 0.97 \begin {gather*} -x + \frac {4 \, {\left (\log \relax (3) + 3\right )}}{2 \, x \log \relax (3) - x \log \left (-10 \, x + 45\right ) + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 34, normalized size = 1.17
method | result | size |
norman | \(\frac {4 x -x^{2} \ln \left (-\frac {10 x}{9}+5\right )-12-4 \ln \relax (3)}{\ln \left (-\frac {10 x}{9}+5\right ) x -4}\) | \(34\) |
risch | \(-x -\frac {12}{\ln \left (-\frac {10 x}{9}+5\right ) x -4}-\frac {4 \ln \relax (3)}{\ln \left (-\frac {10 x}{9}+5\right ) x -4}\) | \(35\) |
derivativedivides | \(-\frac {9 \left (225 \ln \left (-\frac {10 x}{9}+5\right )+\frac {400 x}{9}-\frac {1600}{3}-9 \ln \left (-\frac {10 x}{9}+5\right ) \left (-\frac {10 x}{9}+5\right )^{2}\right )}{10 \left (9 \ln \left (-\frac {10 x}{9}+5\right ) \left (-\frac {10 x}{9}+5\right )-45 \ln \left (-\frac {10 x}{9}+5\right )+40\right )}+\frac {40 \ln \relax (3)}{9 \ln \left (-\frac {10 x}{9}+5\right ) \left (-\frac {10 x}{9}+5\right )-45 \ln \left (-\frac {10 x}{9}+5\right )+40}\) | \(86\) |
default | \(-\frac {9 \left (225 \ln \left (-\frac {10 x}{9}+5\right )+\frac {400 x}{9}-\frac {1600}{3}-9 \ln \left (-\frac {10 x}{9}+5\right ) \left (-\frac {10 x}{9}+5\right )^{2}\right )}{10 \left (9 \ln \left (-\frac {10 x}{9}+5\right ) \left (-\frac {10 x}{9}+5\right )-45 \ln \left (-\frac {10 x}{9}+5\right )+40\right )}+\frac {40 \ln \relax (3)}{9 \ln \left (-\frac {10 x}{9}+5\right ) \left (-\frac {10 x}{9}+5\right )-45 \ln \left (-\frac {10 x}{9}+5\right )+40}\) | \(86\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.52, size = 59, normalized size = 2.03 \begin {gather*} -\frac {{\left (i \, \pi + \log \relax (5) - 2 \, \log \relax (3)\right )} x^{2} + x^{2} \log \left (2 \, x - 9\right ) - 4 \, x + 4 \, \log \relax (3) + 12}{{\left (i \, \pi + \log \relax (5) - 2 \, \log \relax (3)\right )} x + x \log \left (2 \, x - 9\right ) - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.45, size = 22, normalized size = 0.76 \begin {gather*} -x-\frac {\ln \left (81\right )+12}{x\,\ln \left (5-\frac {10\,x}{9}\right )-4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 20, normalized size = 0.69 \begin {gather*} - x + \frac {-12 - 4 \log {\relax (3 )}}{x \log {\left (5 - \frac {10 x}{9} \right )} - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________