Optimal. Leaf size=22 \[ 5 e^{-2+\frac {x}{3 (-4+x) \log ^2(5 x)}} \]
________________________________________________________________________________________
Rubi [F] time = 1.49, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {x+(24-6 x+(-12+3 x) \log (5)) \log ^2(5 x)}{(-12+3 x) \log ^2(5 x)}\right ) (8-2 x-4 \log (5 x))}{\left (48-24 x+3 x^2\right ) \log ^3(5 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {x+(24-6 x+(-12+3 x) \log (5)) \log ^2(5 x)}{(-12+3 x) \log ^2(5 x)}\right ) (8-2 x-4 \log (5 x))}{3 (-4+x)^2 \log ^3(5 x)} \, dx\\ &=\frac {1}{3} \int \frac {\exp \left (\frac {x+(24-6 x+(-12+3 x) \log (5)) \log ^2(5 x)}{(-12+3 x) \log ^2(5 x)}\right ) (8-2 x-4 \log (5 x))}{(-4+x)^2 \log ^3(5 x)} \, dx\\ &=\frac {1}{3} \int \frac {10 e^{-2+\frac {x}{3 (-4+x) \log ^2(5 x)}} (4-x-2 \log (5 x))}{(4-x)^2 \log ^3(5 x)} \, dx\\ &=\frac {10}{3} \int \frac {e^{-2+\frac {x}{3 (-4+x) \log ^2(5 x)}} (4-x-2 \log (5 x))}{(4-x)^2 \log ^3(5 x)} \, dx\\ &=\frac {10}{3} \int \left (-\frac {e^{-2+\frac {x}{3 (-4+x) \log ^2(5 x)}}}{(-4+x) \log ^3(5 x)}-\frac {2 e^{-2+\frac {x}{3 (-4+x) \log ^2(5 x)}}}{(-4+x)^2 \log ^2(5 x)}\right ) \, dx\\ &=-\left (\frac {10}{3} \int \frac {e^{-2+\frac {x}{3 (-4+x) \log ^2(5 x)}}}{(-4+x) \log ^3(5 x)} \, dx\right )-\frac {20}{3} \int \frac {e^{-2+\frac {x}{3 (-4+x) \log ^2(5 x)}}}{(-4+x)^2 \log ^2(5 x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 22, normalized size = 1.00 \begin {gather*} 5 e^{-2+\frac {x}{3 (-4+x) \log ^2(5 x)}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 35, normalized size = 1.59 \begin {gather*} e^{\left (\frac {3 \, {\left ({\left (x - 4\right )} \log \relax (5) - 2 \, x + 8\right )} \log \left (5 \, x\right )^{2} + x}{3 \, {\left (x - 4\right )} \log \left (5 \, x\right )^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 6.92, size = 137, normalized size = 6.23 \begin {gather*} e^{\left (\frac {x \log \relax (5) \log \left (5 \, x\right )^{2}}{x \log \left (5 \, x\right )^{2} - 4 \, \log \left (5 \, x\right )^{2}} - \frac {2 \, x \log \left (5 \, x\right )^{2}}{x \log \left (5 \, x\right )^{2} - 4 \, \log \left (5 \, x\right )^{2}} - \frac {4 \, \log \relax (5) \log \left (5 \, x\right )^{2}}{x \log \left (5 \, x\right )^{2} - 4 \, \log \left (5 \, x\right )^{2}} + \frac {8 \, \log \left (5 \, x\right )^{2}}{x \log \left (5 \, x\right )^{2} - 4 \, \log \left (5 \, x\right )^{2}} + \frac {x}{3 \, {\left (x \log \left (5 \, x\right )^{2} - 4 \, \log \left (5 \, x\right )^{2}\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.10, size = 53, normalized size = 2.41
method | result | size |
risch | \(5^{\frac {x}{x -4}} \left (\frac {1}{625}\right )^{\frac {1}{x -4}} {\mathrm e}^{-\frac {6 x \ln \left (5 x \right )^{2}-24 \ln \left (5 x \right )^{2}-x}{3 \left (x -4\right ) \ln \left (5 x \right )^{2}}}\) | \(53\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.70, size = 62, normalized size = 2.82 \begin {gather*} 5 \, e^{\left (\frac {4}{3 \, {\left (x \log \relax (5)^{2} + {\left (x - 4\right )} \log \relax (x)^{2} - 4 \, \log \relax (5)^{2} + 2 \, {\left (x \log \relax (5) - 4 \, \log \relax (5)\right )} \log \relax (x)\right )}} + \frac {1}{3 \, {\left (\log \relax (5)^{2} + 2 \, \log \relax (5) \log \relax (x) + \log \relax (x)^{2}\right )}} - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.00, size = 401, normalized size = 18.23 \begin {gather*} \frac {5^{\frac {{\ln \relax (x)}^2}{{\ln \relax (x)}^2+2\,\ln \relax (5)\,\ln \relax (x)+{\ln \relax (5)}^2}}\,{\mathrm {e}}^{\frac {3\,x\,{\ln \relax (5)}^3}{3\,x\,{\ln \relax (x)}^2-12\,{\ln \relax (x)}^2+3\,x\,{\ln \relax (5)}^2-24\,\ln \relax (5)\,\ln \relax (x)-12\,{\ln \relax (5)}^2+6\,x\,\ln \relax (5)\,\ln \relax (x)}}\,{\mathrm {e}}^{-\frac {6\,x\,{\ln \relax (5)}^2}{3\,x\,{\ln \relax (x)}^2-12\,{\ln \relax (x)}^2+3\,x\,{\ln \relax (5)}^2-24\,\ln \relax (5)\,\ln \relax (x)-12\,{\ln \relax (5)}^2+6\,x\,\ln \relax (5)\,\ln \relax (x)}}\,{\mathrm {e}}^{\frac {24\,{\ln \relax (x)}^2}{3\,x\,{\ln \relax (x)}^2-12\,{\ln \relax (x)}^2+3\,x\,{\ln \relax (5)}^2-24\,\ln \relax (5)\,\ln \relax (x)-12\,{\ln \relax (5)}^2+6\,x\,\ln \relax (5)\,\ln \relax (x)}}\,{\mathrm {e}}^{\frac {x}{3\,x\,{\ln \relax (x)}^2-12\,{\ln \relax (x)}^2+3\,x\,{\ln \relax (5)}^2-24\,\ln \relax (5)\,\ln \relax (x)-12\,{\ln \relax (5)}^2+6\,x\,\ln \relax (5)\,\ln \relax (x)}}\,{\mathrm {e}}^{-\frac {6\,x\,{\ln \relax (x)}^2}{3\,x\,{\ln \relax (x)}^2-12\,{\ln \relax (x)}^2+3\,x\,{\ln \relax (5)}^2-24\,\ln \relax (5)\,\ln \relax (x)-12\,{\ln \relax (5)}^2+6\,x\,\ln \relax (5)\,\ln \relax (x)}}\,{\mathrm {e}}^{-\frac {12\,{\ln \relax (5)}^3}{3\,x\,{\ln \relax (x)}^2-12\,{\ln \relax (x)}^2+3\,x\,{\ln \relax (5)}^2-24\,\ln \relax (5)\,\ln \relax (x)-12\,{\ln \relax (5)}^2+6\,x\,\ln \relax (5)\,\ln \relax (x)}}\,{\mathrm {e}}^{\frac {24\,{\ln \relax (5)}^2}{3\,x\,{\ln \relax (x)}^2-12\,{\ln \relax (x)}^2+3\,x\,{\ln \relax (5)}^2-24\,\ln \relax (5)\,\ln \relax (x)-12\,{\ln \relax (5)}^2+6\,x\,\ln \relax (5)\,\ln \relax (x)}}}{x^{\frac {2\,\left (2\,\ln \relax (5)-{\ln \relax (5)}^2\right )}{{\ln \relax (x)}^2+2\,\ln \relax (5)\,\ln \relax (x)+{\ln \relax (5)}^2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.95, size = 34, normalized size = 1.55 \begin {gather*} e^{\frac {x + \left (- 6 x + \left (3 x - 12\right ) \log {\relax (5 )} + 24\right ) \log {\left (5 x \right )}^{2}}{\left (3 x - 12\right ) \log {\left (5 x \right )}^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________