Optimal. Leaf size=34 \[ \frac {x}{\log (x-\log (3))+\log \left (\left (-3+\frac {3+e^3+\frac {1}{2} \log (2 x)}{x}\right )^2\right )} \]
________________________________________________________________________________________
Rubi [F] time = 10.36, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4 x-2 e^3 x-6 x^2+\left (10+4 e^3\right ) \log (3)+\left (-6 x-2 e^3 x+6 x^2+\left (6+2 e^3-6 x\right ) \log (3)\right ) \log (x-\log (3))+\log (2 x) (-x+2 \log (3)+(-x+\log (3)) \log (x-\log (3)))+\left (-6 x-2 e^3 x+6 x^2+\left (6+2 e^3-6 x\right ) \log (3)+(-x+\log (3)) \log (2 x)\right ) \log \left (\frac {36+4 e^6+e^3 (24-24 x)-72 x+36 x^2+\left (12+4 e^3-12 x\right ) \log (2 x)+\log ^2(2 x)}{4 x^2}\right )}{\left (-6 x-2 e^3 x+6 x^2+\left (6+2 e^3-6 x\right ) \log (3)\right ) \log ^2(x-\log (3))+(-x+\log (3)) \log (2 x) \log ^2(x-\log (3))+\left (\left (-12 x-4 e^3 x+12 x^2+\left (12+4 e^3-12 x\right ) \log (3)\right ) \log (x-\log (3))+(-2 x+2 \log (3)) \log (2 x) \log (x-\log (3))\right ) \log \left (\frac {36+4 e^6+e^3 (24-24 x)-72 x+36 x^2+\left (12+4 e^3-12 x\right ) \log (2 x)+\log ^2(2 x)}{4 x^2}\right )+\left (-6 x-2 e^3 x+6 x^2+\left (6+2 e^3-6 x\right ) \log (3)+(-x+\log (3)) \log (2 x)\right ) \log ^2\left (\frac {36+4 e^6+e^3 (24-24 x)-72 x+36 x^2+\left (12+4 e^3-12 x\right ) \log (2 x)+\log ^2(2 x)}{4 x^2}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (-4-2 e^3\right ) x-6 x^2+\left (10+4 e^3\right ) \log (3)+\left (-6 x-2 e^3 x+6 x^2+\left (6+2 e^3-6 x\right ) \log (3)\right ) \log (x-\log (3))+\log (2 x) (-x+2 \log (3)+(-x+\log (3)) \log (x-\log (3)))+\left (-6 x-2 e^3 x+6 x^2+\left (6+2 e^3-6 x\right ) \log (3)+(-x+\log (3)) \log (2 x)\right ) \log \left (\frac {36+4 e^6+e^3 (24-24 x)-72 x+36 x^2+\left (12+4 e^3-12 x\right ) \log (2 x)+\log ^2(2 x)}{4 x^2}\right )}{\left (-6 x-2 e^3 x+6 x^2+\left (6+2 e^3-6 x\right ) \log (3)\right ) \log ^2(x-\log (3))+(-x+\log (3)) \log (2 x) \log ^2(x-\log (3))+\left (\left (-12 x-4 e^3 x+12 x^2+\left (12+4 e^3-12 x\right ) \log (3)\right ) \log (x-\log (3))+(-2 x+2 \log (3)) \log (2 x) \log (x-\log (3))\right ) \log \left (\frac {36+4 e^6+e^3 (24-24 x)-72 x+36 x^2+\left (12+4 e^3-12 x\right ) \log (2 x)+\log ^2(2 x)}{4 x^2}\right )+\left (-6 x-2 e^3 x+6 x^2+\left (6+2 e^3-6 x\right ) \log (3)+(-x+\log (3)) \log (2 x)\right ) \log ^2\left (\frac {36+4 e^6+e^3 (24-24 x)-72 x+36 x^2+\left (12+4 e^3-12 x\right ) \log (2 x)+\log ^2(2 x)}{4 x^2}\right )} \, dx\\ &=\int \frac {4 \left (1+\frac {e^3}{2}\right ) x+6 x^2-10 \log (3) \left (1+\frac {e^3 \log (81)}{\log (59049)}\right )-\left (6 x^2+e^3 \log (9)-2 x \left (3+e^3+\log (27)\right )+\log (729)\right ) \log (x-\log (3))-6 x^2 \log \left (\frac {\left (6+2 e^3-6 x+\log (2 x)\right )^2}{4 x^2}\right )-6 \left (1+\frac {e^3}{3}\right ) \log (3) \log \left (\frac {\left (6+2 e^3-6 x+\log (2 x)\right )^2}{4 x^2}\right )+6 x \left (1+\frac {e^3}{3}+\log (3)\right ) \log \left (\frac {\left (6+2 e^3-6 x+\log (2 x)\right )^2}{4 x^2}\right )-\log (2 x) \left (-x+\log (9)+(-x+\log (3)) \log (x-\log (3))+(-x+\log (3)) \log \left (\frac {\left (6+2 e^3-6 x+\log (2 x)\right )^2}{4 x^2}\right )\right )}{(x-\log (3)) \left (6 \left (1+\frac {e^3}{3}\right )-6 x+\log (2 x)\right ) \left (\log (x-\log (3))+\log \left (\frac {\left (6+2 e^3-6 x+\log (2 x)\right )^2}{4 x^2}\right )\right )^2} \, dx\\ &=\int \left (\frac {-\log (2) \log (9) \log (59049) \left (1+\frac {e^3 \log (81)+\log (59049)}{\log (2) \log (9)}\right )+x \log (2) \log (59049) \left (1+\frac {e^3 \log (3486784401)+\log (12157665459056928801)}{\log (2) \log (59049)}\right )+x^2 \log (42391158275216203514294433201)+x \log (59049) \log (x)-\log (9) \log (59049) \log (x)}{(x-\log (3)) \log (59049) \left (6 \left (1+\frac {e^3}{3}\right )-6 x+\log (2 x)\right ) \left (\log (x-\log (3))+\log \left (\frac {\left (6+2 e^3-6 x+\log (2 x)\right )^2}{4 x^2}\right )\right )^2}+\frac {1}{\log (x-\log (3))+\log \left (\frac {\left (6+2 e^3-6 x+\log (2 x)\right )^2}{4 x^2}\right )}\right ) \, dx\\ &=\frac {\int \frac {-\log (2) \log (9) \log (59049) \left (1+\frac {e^3 \log (81)+\log (59049)}{\log (2) \log (9)}\right )+x \log (2) \log (59049) \left (1+\frac {e^3 \log (3486784401)+\log (12157665459056928801)}{\log (2) \log (59049)}\right )+x^2 \log (42391158275216203514294433201)+x \log (59049) \log (x)-\log (9) \log (59049) \log (x)}{(x-\log (3)) \left (6 \left (1+\frac {e^3}{3}\right )-6 x+\log (2 x)\right ) \left (\log (x-\log (3))+\log \left (\frac {\left (6+2 e^3-6 x+\log (2 x)\right )^2}{4 x^2}\right )\right )^2} \, dx}{\log (59049)}+\int \frac {1}{\log (x-\log (3))+\log \left (\frac {\left (6+2 e^3-6 x+\log (2 x)\right )^2}{4 x^2}\right )} \, dx\\ &=\frac {\int \frac {-\log (59049) \left (\log (2) \log (9)+e^3 \log (81)+\log (59049)\right )+x \left (\log (2) \log (59049)+e^3 \log (3486784401)+\log (12157665459056928801)\right )+x^2 \log (42391158275216203514294433201)-(-x+\log (9)) \log (59049) \log (x)}{(x-\log (3)) \left (6 \left (1+\frac {e^3}{3}\right )-6 x+\log (2 x)\right ) \left (\log (x-\log (3))+\log \left (\frac {\left (6+2 e^3-6 x+\log (2 x)\right )^2}{4 x^2}\right )\right )^2} \, dx}{\log (59049)}+\int \frac {1}{\log (x-\log (3))+\log \left (\frac {\left (6+2 e^3-6 x+\log (2 x)\right )^2}{4 x^2}\right )} \, dx\\ &=\frac {\int \left (\frac {\left (-\log (2) \log (9)-e^3 \log (81)-\log (59049)\right ) \log (59049)}{(x-\log (3)) \left (6 \left (1+\frac {e^3}{3}\right )-6 x+\log (2 x)\right ) \left (\log (x-\log (3))+\log \left (\frac {\left (6+2 e^3-6 x+\log (2 x)\right )^2}{4 x^2}\right )\right )^2}+\frac {x \left (\log (2) \log (59049)+e^3 \log (3486784401)+\log (12157665459056928801)\right )}{(x-\log (3)) \left (6 \left (1+\frac {e^3}{3}\right )-6 x+\log (2 x)\right ) \left (\log (x-\log (3))+\log \left (\frac {\left (6+2 e^3-6 x+\log (2 x)\right )^2}{4 x^2}\right )\right )^2}+\frac {x^2 \log (42391158275216203514294433201)}{(x-\log (3)) \left (6 \left (1+\frac {e^3}{3}\right )-6 x+\log (2 x)\right ) \left (\log (x-\log (3))+\log \left (\frac {\left (6+2 e^3-6 x+\log (2 x)\right )^2}{4 x^2}\right )\right )^2}+\frac {x \log (59049) \log (x)}{(x-\log (3)) \left (6 \left (1+\frac {e^3}{3}\right )-6 x+\log (2 x)\right ) \left (\log (x-\log (3))+\log \left (\frac {\left (6+2 e^3-6 x+\log (2 x)\right )^2}{4 x^2}\right )\right )^2}+\frac {\log (9) \log (59049) \log (x)}{(-x+\log (3)) \left (6 \left (1+\frac {e^3}{3}\right )-6 x+\log (2 x)\right ) \left (\log (x-\log (3))+\log \left (\frac {\left (6+2 e^3-6 x+\log (2 x)\right )^2}{4 x^2}\right )\right )^2}\right ) \, dx}{\log (59049)}+\int \frac {1}{\log (x-\log (3))+\log \left (\frac {\left (6+2 e^3-6 x+\log (2 x)\right )^2}{4 x^2}\right )} \, dx\\ &=\left (4+2 e^3+\log (2)\right ) \int \frac {x}{(x-\log (3)) \left (6 \left (1+\frac {e^3}{3}\right )-6 x+\log (2 x)\right ) \left (\log (x-\log (3))+\log \left (\frac {\left (6+2 e^3-6 x+\log (2 x)\right )^2}{4 x^2}\right )\right )^2} \, dx+\log (9) \int \frac {\log (x)}{(-x+\log (3)) \left (6 \left (1+\frac {e^3}{3}\right )-6 x+\log (2 x)\right ) \left (\log (x-\log (3))+\log \left (\frac {\left (6+2 e^3-6 x+\log (2 x)\right )^2}{4 x^2}\right )\right )^2} \, dx-\left (\left (5+2 e^3+\log (2)\right ) \log (9)\right ) \int \frac {1}{(x-\log (3)) \left (6 \left (1+\frac {e^3}{3}\right )-6 x+\log (2 x)\right ) \left (\log (x-\log (3))+\log \left (\frac {\left (6+2 e^3-6 x+\log (2 x)\right )^2}{4 x^2}\right )\right )^2} \, dx+\frac {\log (42391158275216203514294433201) \int \frac {x^2}{(x-\log (3)) \left (6 \left (1+\frac {e^3}{3}\right )-6 x+\log (2 x)\right ) \left (\log (x-\log (3))+\log \left (\frac {\left (6+2 e^3-6 x+\log (2 x)\right )^2}{4 x^2}\right )\right )^2} \, dx}{\log (59049)}+\int \frac {x \log (x)}{(x-\log (3)) \left (6 \left (1+\frac {e^3}{3}\right )-6 x+\log (2 x)\right ) \left (\log (x-\log (3))+\log \left (\frac {\left (6+2 e^3-6 x+\log (2 x)\right )^2}{4 x^2}\right )\right )^2} \, dx+\int \frac {1}{\log (x-\log (3))+\log \left (\frac {\left (6+2 e^3-6 x+\log (2 x)\right )^2}{4 x^2}\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.39, size = 37, normalized size = 1.09 \begin {gather*} \frac {x}{\log \left (\frac {1}{4} (x-\log (3))\right )+\log \left (\frac {\left (6+2 e^3-6 x+\log (2 x)\right )^2}{x^2}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 60, normalized size = 1.76 \begin {gather*} \frac {x}{\log \left (x - \log \relax (3)\right ) + \log \left (\frac {36 \, x^{2} - 24 \, {\left (x - 1\right )} e^{3} - 4 \, {\left (3 \, x - e^{3} - 3\right )} \log \left (2 \, x\right ) + \log \left (2 \, x\right )^{2} - 72 \, x + 4 \, e^{6} + 36}{4 \, x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 37.74, size = 69, normalized size = 2.03 \begin {gather*} \frac {x}{\log \left (36 \, x^{2} - 24 \, x e^{3} - 12 \, x \log \left (2 \, x\right ) + 4 \, e^{3} \log \left (2 \, x\right ) + \log \left (2 \, x\right )^{2} - 72 \, x + 4 \, e^{6} + 24 \, e^{3} + 12 \, \log \left (2 \, x\right ) + 36\right ) - 2 \, \log \left (2 \, x\right ) + \log \left (x - \log \relax (3)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.19, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (\ln \relax (3)-x \right ) \ln \left (2 x \right )+\left (2 \,{\mathrm e}^{3}+6-6 x \right ) \ln \relax (3)-2 x \,{\mathrm e}^{3}+6 x^{2}-6 x \right ) \ln \left (\frac {\ln \left (2 x \right )^{2}+\left (4 \,{\mathrm e}^{3}-12 x +12\right ) \ln \left (2 x \right )+4 \,{\mathrm e}^{6}+\left (-24 x +24\right ) {\mathrm e}^{3}+36 x^{2}-72 x +36}{4 x^{2}}\right )+\left (\left (\ln \relax (3)-x \right ) \ln \left (-\ln \relax (3)+x \right )+2 \ln \relax (3)-x \right ) \ln \left (2 x \right )+\left (\left (2 \,{\mathrm e}^{3}+6-6 x \right ) \ln \relax (3)-2 x \,{\mathrm e}^{3}+6 x^{2}-6 x \right ) \ln \left (-\ln \relax (3)+x \right )+\left (4 \,{\mathrm e}^{3}+10\right ) \ln \relax (3)-2 x \,{\mathrm e}^{3}-6 x^{2}-4 x}{\left (\left (\ln \relax (3)-x \right ) \ln \left (2 x \right )+\left (2 \,{\mathrm e}^{3}+6-6 x \right ) \ln \relax (3)-2 x \,{\mathrm e}^{3}+6 x^{2}-6 x \right ) \ln \left (\frac {\ln \left (2 x \right )^{2}+\left (4 \,{\mathrm e}^{3}-12 x +12\right ) \ln \left (2 x \right )+4 \,{\mathrm e}^{6}+\left (-24 x +24\right ) {\mathrm e}^{3}+36 x^{2}-72 x +36}{4 x^{2}}\right )^{2}+\left (\left (2 \ln \relax (3)-2 x \right ) \ln \left (-\ln \relax (3)+x \right ) \ln \left (2 x \right )+\left (\left (4 \,{\mathrm e}^{3}-12 x +12\right ) \ln \relax (3)-4 x \,{\mathrm e}^{3}+12 x^{2}-12 x \right ) \ln \left (-\ln \relax (3)+x \right )\right ) \ln \left (\frac {\ln \left (2 x \right )^{2}+\left (4 \,{\mathrm e}^{3}-12 x +12\right ) \ln \left (2 x \right )+4 \,{\mathrm e}^{6}+\left (-24 x +24\right ) {\mathrm e}^{3}+36 x^{2}-72 x +36}{4 x^{2}}\right )+\left (\ln \relax (3)-x \right ) \ln \left (-\ln \relax (3)+x \right )^{2} \ln \left (2 x \right )+\left (\left (2 \,{\mathrm e}^{3}+6-6 x \right ) \ln \relax (3)-2 x \,{\mathrm e}^{3}+6 x^{2}-6 x \right ) \ln \left (-\ln \relax (3)+x \right )^{2}}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.69, size = 43, normalized size = 1.26 \begin {gather*} -\frac {x}{2 \, \log \relax (2) - 2 \, \log \left (6 \, x - 2 \, e^{3} - \log \relax (2) - \log \relax (x) - 6\right ) - \log \left (x - \log \relax (3)\right ) + 2 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {4\,x+\ln \left (\frac {{\mathrm {e}}^6-18\,x+\frac {\ln \left (2\,x\right )\,\left (4\,{\mathrm {e}}^3-12\,x+12\right )}{4}+\frac {{\ln \left (2\,x\right )}^2}{4}+9\,x^2-\frac {{\mathrm {e}}^3\,\left (24\,x-24\right )}{4}+9}{x^2}\right )\,\left (6\,x+2\,x\,{\mathrm {e}}^3+\ln \left (2\,x\right )\,\left (x-\ln \relax (3)\right )-\ln \relax (3)\,\left (2\,{\mathrm {e}}^3-6\,x+6\right )-6\,x^2\right )+2\,x\,{\mathrm {e}}^3+\ln \left (2\,x\right )\,\left (x-2\,\ln \relax (3)+\ln \left (x-\ln \relax (3)\right )\,\left (x-\ln \relax (3)\right )\right )+6\,x^2+\ln \left (x-\ln \relax (3)\right )\,\left (6\,x+2\,x\,{\mathrm {e}}^3-\ln \relax (3)\,\left (2\,{\mathrm {e}}^3-6\,x+6\right )-6\,x^2\right )-\ln \relax (3)\,\left (4\,{\mathrm {e}}^3+10\right )}{{\ln \left (x-\ln \relax (3)\right )}^2\,\left (6\,x+2\,x\,{\mathrm {e}}^3-\ln \relax (3)\,\left (2\,{\mathrm {e}}^3-6\,x+6\right )-6\,x^2\right )+\ln \left (\frac {{\mathrm {e}}^6-18\,x+\frac {\ln \left (2\,x\right )\,\left (4\,{\mathrm {e}}^3-12\,x+12\right )}{4}+\frac {{\ln \left (2\,x\right )}^2}{4}+9\,x^2-\frac {{\mathrm {e}}^3\,\left (24\,x-24\right )}{4}+9}{x^2}\right )\,\left (\ln \left (x-\ln \relax (3)\right )\,\left (12\,x+4\,x\,{\mathrm {e}}^3-\ln \relax (3)\,\left (4\,{\mathrm {e}}^3-12\,x+12\right )-12\,x^2\right )+\ln \left (x-\ln \relax (3)\right )\,\ln \left (2\,x\right )\,\left (2\,x-2\,\ln \relax (3)\right )\right )+{\ln \left (\frac {{\mathrm {e}}^6-18\,x+\frac {\ln \left (2\,x\right )\,\left (4\,{\mathrm {e}}^3-12\,x+12\right )}{4}+\frac {{\ln \left (2\,x\right )}^2}{4}+9\,x^2-\frac {{\mathrm {e}}^3\,\left (24\,x-24\right )}{4}+9}{x^2}\right )}^2\,\left (6\,x+2\,x\,{\mathrm {e}}^3+\ln \left (2\,x\right )\,\left (x-\ln \relax (3)\right )-\ln \relax (3)\,\left (2\,{\mathrm {e}}^3-6\,x+6\right )-6\,x^2\right )+{\ln \left (x-\ln \relax (3)\right )}^2\,\ln \left (2\,x\right )\,\left (x-\ln \relax (3)\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.72, size = 61, normalized size = 1.79 \begin {gather*} \frac {x}{\log {\left (\frac {9 x^{2} - 18 x + \frac {\left (24 - 24 x\right ) e^{3}}{4} + \frac {\left (- 12 x + 12 + 4 e^{3}\right ) \log {\left (2 x \right )}}{4} + \frac {\log {\left (2 x \right )}^{2}}{4} + 9 + e^{6}}{x^{2}} \right )} + \log {\left (x - \log {\relax (3 )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________