Optimal. Leaf size=26 \[ \frac {e^x}{x}+e^3 x \log \left (10-x+x^2+\log (2+x)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.33, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x \left (-20+12 x+7 x^2+x^4\right )+e^3 \left (-x^3+3 x^4+2 x^5\right )+e^x \left (-2+x+x^2\right ) \log (2+x)+\left (e^3 \left (20 x^2+8 x^3+x^4+x^5\right )+e^3 \left (2 x^2+x^3\right ) \log (2+x)\right ) \log \left (10-x+x^2+\log (2+x)\right )}{20 x^2+8 x^3+x^4+x^5+\left (2 x^2+x^3\right ) \log (2+x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x \left (-20+12 x+7 x^2+x^4\right )+e^3 \left (-x^3+3 x^4+2 x^5\right )+e^x \left (-2+x+x^2\right ) \log (2+x)+\left (e^3 \left (20 x^2+8 x^3+x^4+x^5\right )+e^3 \left (2 x^2+x^3\right ) \log (2+x)\right ) \log \left (10-x+x^2+\log (2+x)\right )}{x^2 (2+x) \left (10-x+x^2+\log (2+x)\right )} \, dx\\ &=\int \left (\frac {e^x (-1+x)}{x^2}+\frac {e^3 \left (-x+3 x^2+2 x^3+20 \log \left (10-x+x^2+\log (2+x)\right )+8 x \log \left (10-x+x^2+\log (2+x)\right )+x^2 \log \left (10-x+x^2+\log (2+x)\right )+x^3 \log \left (10-x+x^2+\log (2+x)\right )+2 \log (2+x) \log \left (10-x+x^2+\log (2+x)\right )+x \log (2+x) \log \left (10-x+x^2+\log (2+x)\right )\right )}{(2+x) \left (10-x+x^2+\log (2+x)\right )}\right ) \, dx\\ &=e^3 \int \frac {-x+3 x^2+2 x^3+20 \log \left (10-x+x^2+\log (2+x)\right )+8 x \log \left (10-x+x^2+\log (2+x)\right )+x^2 \log \left (10-x+x^2+\log (2+x)\right )+x^3 \log \left (10-x+x^2+\log (2+x)\right )+2 \log (2+x) \log \left (10-x+x^2+\log (2+x)\right )+x \log (2+x) \log \left (10-x+x^2+\log (2+x)\right )}{(2+x) \left (10-x+x^2+\log (2+x)\right )} \, dx+\int \frac {e^x (-1+x)}{x^2} \, dx\\ &=\frac {e^x}{x}+e^3 \int \left (\frac {x \left (-1+3 x+2 x^2\right )}{(2+x) \left (10-x+x^2+\log (2+x)\right )}+\log \left (10-x+x^2+\log (2+x)\right )\right ) \, dx\\ &=\frac {e^x}{x}+e^3 \int \frac {x \left (-1+3 x+2 x^2\right )}{(2+x) \left (10-x+x^2+\log (2+x)\right )} \, dx+e^3 \int \log \left (10-x+x^2+\log (2+x)\right ) \, dx\\ &=\frac {e^x}{x}+e^3 \int \left (\frac {1}{10-x+x^2+\log (2+x)}-\frac {x}{10-x+x^2+\log (2+x)}+\frac {2 x^2}{10-x+x^2+\log (2+x)}-\frac {2}{(2+x) \left (10-x+x^2+\log (2+x)\right )}\right ) \, dx+e^3 \int \log \left (10-x+x^2+\log (2+x)\right ) \, dx\\ &=\frac {e^x}{x}+e^3 \int \frac {1}{10-x+x^2+\log (2+x)} \, dx-e^3 \int \frac {x}{10-x+x^2+\log (2+x)} \, dx+e^3 \int \log \left (10-x+x^2+\log (2+x)\right ) \, dx+\left (2 e^3\right ) \int \frac {x^2}{10-x+x^2+\log (2+x)} \, dx-\left (2 e^3\right ) \int \frac {1}{(2+x) \left (10-x+x^2+\log (2+x)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 26, normalized size = 1.00 \begin {gather*} \frac {e^x}{x}+e^3 x \log \left (10-x+x^2+\log (2+x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 26, normalized size = 1.00 \begin {gather*} \frac {x^{2} e^{3} \log \left (x^{2} - x + \log \left (x + 2\right ) + 10\right ) + e^{x}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 26, normalized size = 1.00 \begin {gather*} \frac {x^{2} e^{3} \log \left (x^{2} - x + \log \left (x + 2\right ) + 10\right ) + e^{x}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 25, normalized size = 0.96
method | result | size |
risch | \(\frac {{\mathrm e}^{x}}{x}+{\mathrm e}^{3} \ln \left (\ln \left (2+x \right )+x^{2}-x +10\right ) x\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 26, normalized size = 1.00 \begin {gather*} \frac {x^{2} e^{3} \log \left (x^{2} - x + \log \left (x + 2\right ) + 10\right ) + e^{x}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.36, size = 24, normalized size = 0.92 \begin {gather*} \frac {{\mathrm {e}}^x}{x}+x\,{\mathrm {e}}^3\,\ln \left (\ln \left (x+2\right )-x+x^2+10\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.27, size = 42, normalized size = 1.62 \begin {gather*} \left (x e^{3} + e^{3}\right ) \log {\left (x^{2} - x + \log {\left (x + 2 \right )} + 10 \right )} - e^{3} \log {\left (x^{2} - x + \log {\left (x + 2 \right )} + 10 \right )} + \frac {e^{x}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________