3.67.37
Optimal. Leaf size=26
________________________________________________________________________________________
Rubi [F] time = 2.33, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(E^x*(-20 + 12*x + 7*x^2 + x^4) + E^3*(-x^3 + 3*x^4 + 2*x^5) + E^x*(-2 + x + x^2)*Log[2 + x] + (E^3*(20*x^
2 + 8*x^3 + x^4 + x^5) + E^3*(2*x^2 + x^3)*Log[2 + x])*Log[10 - x + x^2 + Log[2 + x]])/(20*x^2 + 8*x^3 + x^4 +
x^5 + (2*x^2 + x^3)*Log[2 + x]),x]
[Out]
E^x/x + E^3*Defer[Int][(10 - x + x^2 + Log[2 + x])^(-1), x] - E^3*Defer[Int][x/(10 - x + x^2 + Log[2 + x]), x]
+ 2*E^3*Defer[Int][x^2/(10 - x + x^2 + Log[2 + x]), x] - 2*E^3*Defer[Int][1/((2 + x)*(10 - x + x^2 + Log[2 +
x])), x] + E^3*Defer[Int][Log[10 - x + x^2 + Log[2 + x]], x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 26, normalized size = 1.00
Antiderivative was successfully verified.
[In]
Integrate[(E^x*(-20 + 12*x + 7*x^2 + x^4) + E^3*(-x^3 + 3*x^4 + 2*x^5) + E^x*(-2 + x + x^2)*Log[2 + x] + (E^3*
(20*x^2 + 8*x^3 + x^4 + x^5) + E^3*(2*x^2 + x^3)*Log[2 + x])*Log[10 - x + x^2 + Log[2 + x]])/(20*x^2 + 8*x^3 +
x^4 + x^5 + (2*x^2 + x^3)*Log[2 + x]),x]
[Out]
E^x/x + E^3*x*Log[10 - x + x^2 + Log[2 + x]]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 26, normalized size = 1.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((x^3+2*x^2)*exp(3)*log(2+x)+(x^5+x^4+8*x^3+20*x^2)*exp(3))*log(log(2+x)+x^2-x+10)+(x^2+x-2)*exp(x)
*log(2+x)+(x^4+7*x^2+12*x-20)*exp(x)+(2*x^5+3*x^4-x^3)*exp(3))/((x^3+2*x^2)*log(2+x)+x^5+x^4+8*x^3+20*x^2),x,
algorithm="fricas")
[Out]
(x^2*e^3*log(x^2 - x + log(x + 2) + 10) + e^x)/x
________________________________________________________________________________________
giac [A] time = 0.20, size = 26, normalized size = 1.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((x^3+2*x^2)*exp(3)*log(2+x)+(x^5+x^4+8*x^3+20*x^2)*exp(3))*log(log(2+x)+x^2-x+10)+(x^2+x-2)*exp(x)
*log(2+x)+(x^4+7*x^2+12*x-20)*exp(x)+(2*x^5+3*x^4-x^3)*exp(3))/((x^3+2*x^2)*log(2+x)+x^5+x^4+8*x^3+20*x^2),x,
algorithm="giac")
[Out]
(x^2*e^3*log(x^2 - x + log(x + 2) + 10) + e^x)/x
________________________________________________________________________________________
maple [A] time = 0.09, size = 25, normalized size = 0.96
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((x^3+2*x^2)*exp(3)*ln(2+x)+(x^5+x^4+8*x^3+20*x^2)*exp(3))*ln(ln(2+x)+x^2-x+10)+(x^2+x-2)*exp(x)*ln(2+x)+
(x^4+7*x^2+12*x-20)*exp(x)+(2*x^5+3*x^4-x^3)*exp(3))/((x^3+2*x^2)*ln(2+x)+x^5+x^4+8*x^3+20*x^2),x,method=_RETU
RNVERBOSE)
[Out]
exp(x)/x+exp(3)*ln(ln(2+x)+x^2-x+10)*x
________________________________________________________________________________________
maxima [A] time = 0.42, size = 26, normalized size = 1.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((x^3+2*x^2)*exp(3)*log(2+x)+(x^5+x^4+8*x^3+20*x^2)*exp(3))*log(log(2+x)+x^2-x+10)+(x^2+x-2)*exp(x)
*log(2+x)+(x^4+7*x^2+12*x-20)*exp(x)+(2*x^5+3*x^4-x^3)*exp(3))/((x^3+2*x^2)*log(2+x)+x^5+x^4+8*x^3+20*x^2),x,
algorithm="maxima")
[Out]
(x^2*e^3*log(x^2 - x + log(x + 2) + 10) + e^x)/x
________________________________________________________________________________________
mupad [B] time = 0.36, size = 24, normalized size = 0.92
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((log(log(x + 2) - x + x^2 + 10)*(exp(3)*(20*x^2 + 8*x^3 + x^4 + x^5) + log(x + 2)*exp(3)*(2*x^2 + x^3)) +
exp(x)*(12*x + 7*x^2 + x^4 - 20) + exp(3)*(3*x^4 - x^3 + 2*x^5) + log(x + 2)*exp(x)*(x + x^2 - 2))/(log(x + 2)
*(2*x^2 + x^3) + 20*x^2 + 8*x^3 + x^4 + x^5),x)
[Out]
exp(x)/x + x*exp(3)*log(log(x + 2) - x + x^2 + 10)
________________________________________________________________________________________
sympy [A] time = 1.27, size = 42, normalized size = 1.62
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((x**3+2*x**2)*exp(3)*ln(2+x)+(x**5+x**4+8*x**3+20*x**2)*exp(3))*ln(ln(2+x)+x**2-x+10)+(x**2+x-2)*e
xp(x)*ln(2+x)+(x**4+7*x**2+12*x-20)*exp(x)+(2*x**5+3*x**4-x**3)*exp(3))/((x**3+2*x**2)*ln(2+x)+x**5+x**4+8*x**
3+20*x**2),x)
[Out]
(x*exp(3) + exp(3))*log(x**2 - x + log(x + 2) + 10) - exp(3)*log(x**2 - x + log(x + 2) + 10) + exp(x)/x
________________________________________________________________________________________