Optimal. Leaf size=29 \[ \frac {x-\log (3) \left (5 \left (e^{(4+\log (x))^2}+x\right )-\frac {1}{\log (5)}\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 26, normalized size of antiderivative = 0.90, number of steps used = 4, number of rules used = 3, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.075, Rules used = {12, 14, 2288} \begin {gather*} \frac {\log (3)}{x \log (5)}-5 x^7 \log (3) e^{\log ^2(x)+16} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-\log (3)+e^{16+\log ^2(x)} x^8 (-35 \log (3) \log (5)-10 \log (3) \log (5) \log (x))}{x^2} \, dx}{\log (5)}\\ &=\frac {\int \left (-\frac {\log (3)}{x^2}-5 e^{16+\log ^2(x)} x^6 \log (3) \log (5) (7+2 \log (x))\right ) \, dx}{\log (5)}\\ &=\frac {\log (3)}{x \log (5)}-(5 \log (3)) \int e^{16+\log ^2(x)} x^6 (7+2 \log (x)) \, dx\\ &=-5 e^{16+\log ^2(x)} x^7 \log (3)+\frac {\log (3)}{x \log (5)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 26, normalized size = 0.90 \begin {gather*} \frac {\log (3) \left (\frac {1}{x}-5 e^{16+\log ^2(x)} x^7 \log (5)\right )}{\log (5)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 31, normalized size = 1.07 \begin {gather*} -\frac {5 \, e^{\left (\log \relax (x)^{2} + 8 \, \log \relax (x) + 16\right )} \log \relax (5) \log \relax (3) - \log \relax (3)}{x \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 30, normalized size = 1.03 \begin {gather*} -\frac {5 \, x^{8} e^{\left (\log \relax (x)^{2} + 16\right )} \log \relax (5) \log \relax (3) - \log \relax (3)}{x \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 26, normalized size = 0.90
method | result | size |
risch | \(-5 \ln \relax (3) x^{7} {\mathrm e}^{\ln \relax (x )^{2}+16}+\frac {\ln \relax (3)}{\ln \relax (5) x}\) | \(26\) |
norman | \(\frac {\frac {\ln \relax (3)}{\ln \relax (5)}-5 \ln \relax (3) {\mathrm e}^{\ln \relax (x )^{2}+8 \ln \relax (x )+16}}{x}\) | \(28\) |
default | \(\frac {-\frac {5 \ln \relax (3) \ln \relax (5) {\mathrm e}^{\ln \relax (x )^{2}+8 \ln \relax (x )+16}}{x}+\frac {\ln \relax (3)}{x}}{\ln \relax (5)}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.43, size = 94, normalized size = 3.24 \begin {gather*} \frac {35 i \, \sqrt {\pi } \operatorname {erf}\left (i \, \log \relax (x) + \frac {7}{2} i\right ) e^{\frac {15}{4}} \log \relax (5) \log \relax (3) + 5 \, {\left (\frac {7 \, \sqrt {\pi } {\left (\operatorname {erf}\left (\frac {1}{2} \, \sqrt {-{\left (2 \, \log \relax (x) + 7\right )}^{2}}\right ) - 1\right )} {\left (2 \, \log \relax (x) + 7\right )}}{\sqrt {-{\left (2 \, \log \relax (x) + 7\right )}^{2}}} - 2 \, e^{\left (\frac {1}{4} \, {\left (2 \, \log \relax (x) + 7\right )}^{2}\right )}\right )} e^{\frac {15}{4}} \log \relax (5) \log \relax (3) + \frac {2 \, \log \relax (3)}{x}}{2 \, \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.34, size = 25, normalized size = 0.86 \begin {gather*} \frac {\ln \relax (3)}{x\,\ln \relax (5)}-5\,x^7\,{\mathrm {e}}^{16}\,{\mathrm {e}}^{{\ln \relax (x)}^2}\,\ln \relax (3) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 24, normalized size = 0.83 \begin {gather*} - 5 x^{7} e^{\log {\relax (x )}^{2} + 16} \log {\relax (3 )} + \frac {\log {\relax (3 )}}{x \log {\relax (5 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________