Optimal. Leaf size=23 \[ \frac {1}{4} e^6 \log \left (\frac {3}{10} e^2 x \left (-x+x^2\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 23, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {12, 631} \begin {gather*} \frac {1}{4} e^6 \log (1-x)+\frac {1}{2} e^6 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 631
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e^6 \int \frac {-2+3 x}{-4 x+4 x^2} \, dx\\ &=e^6 \int \left (\frac {1}{4 (-1+x)}+\frac {1}{2 x}\right ) \, dx\\ &=\frac {1}{4} e^6 \log (1-x)+\frac {1}{2} e^6 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 21, normalized size = 0.91 \begin {gather*} e^6 \left (\frac {1}{4} \log (1-x)+\frac {\log (x)}{2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 15, normalized size = 0.65 \begin {gather*} \frac {1}{4} \, e^{6} \log \left (x - 1\right ) + \frac {1}{2} \, e^{6} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 15, normalized size = 0.65 \begin {gather*} \frac {1}{4} \, {\left (\log \left ({\left | x - 1 \right |}\right ) + 2 \, \log \left ({\left | x \right |}\right )\right )} e^{6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 16, normalized size = 0.70
method | result | size |
default | \(\frac {{\mathrm e}^{6} \left (2 \ln \relax (x )+\ln \left (x -1\right )\right )}{4}\) | \(16\) |
risch | \(\frac {{\mathrm e}^{6} \ln \relax (x )}{2}+\frac {{\mathrm e}^{6} \ln \left (x -1\right )}{4}\) | \(16\) |
norman | \(\frac {{\mathrm e}^{6} \ln \relax (x )}{2}+\frac {{\mathrm e}^{6} \ln \left (x -1\right )}{4}\) | \(20\) |
meijerg | \(\frac {{\mathrm e}^{6} \left (\ln \relax (x )+i \pi -\ln \left (1-x \right )\right )}{2}+\frac {3 \,{\mathrm e}^{6} \ln \left (1-x \right )}{4}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 13, normalized size = 0.57 \begin {gather*} \frac {1}{4} \, {\left (\log \left (x - 1\right ) + 2 \, \log \relax (x)\right )} e^{6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 15, normalized size = 0.65 \begin {gather*} \frac {\ln \left (x-1\right )\,{\mathrm {e}}^6}{4}+\frac {{\mathrm {e}}^6\,\ln \relax (x)}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 17, normalized size = 0.74 \begin {gather*} \frac {e^{6} \log {\relax (x )}}{2} + \frac {e^{6} \log {\left (x - 1 \right )}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________