Optimal. Leaf size=23 \[ -2+5 \left (-5+e^{x^6}-\frac {3}{x}-x+\log \left (x^2\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 20, normalized size of antiderivative = 0.87, number of steps used = 5, number of rules used = 2, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {14, 2209} \begin {gather*} 5 e^{x^6}-5 x-\frac {15}{x}+10 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2209
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (30 e^{x^6} x^5-\frac {5 \left (-3-2 x+x^2\right )}{x^2}\right ) \, dx\\ &=-\left (5 \int \frac {-3-2 x+x^2}{x^2} \, dx\right )+30 \int e^{x^6} x^5 \, dx\\ &=5 e^{x^6}-5 \int \left (1-\frac {3}{x^2}-\frac {2}{x}\right ) \, dx\\ &=5 e^{x^6}-\frac {15}{x}-5 x+10 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 20, normalized size = 0.87 \begin {gather*} 5 \left (e^{x^6}-\frac {3}{x}-x+2 \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 22, normalized size = 0.96 \begin {gather*} -\frac {5 \, {\left (x^{2} - x e^{\left (x^{6}\right )} - 2 \, x \log \relax (x) + 3\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 22, normalized size = 0.96 \begin {gather*} -\frac {5 \, {\left (x^{2} - x e^{\left (x^{6}\right )} - 2 \, x \log \relax (x) + 3\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 20, normalized size = 0.87
method | result | size |
default | \(-5 x -\frac {15}{x}+10 \ln \relax (x )+5 \,{\mathrm e}^{x^{6}}\) | \(20\) |
risch | \(-5 x -\frac {15}{x}+10 \ln \relax (x )+5 \,{\mathrm e}^{x^{6}}\) | \(20\) |
norman | \(\frac {-15-5 x^{2}+5 x \,{\mathrm e}^{x^{6}}}{x}+10 \ln \relax (x )\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 19, normalized size = 0.83 \begin {gather*} -5 \, x - \frac {15}{x} + 5 \, e^{\left (x^{6}\right )} + 10 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.18, size = 24, normalized size = 1.04 \begin {gather*} 10\,\ln \relax (x)-\frac {5\,x^2-5\,x\,{\mathrm {e}}^{x^6}+15}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 17, normalized size = 0.74 \begin {gather*} - 5 x + 5 e^{x^{6}} + 10 \log {\relax (x )} - \frac {15}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________