Optimal. Leaf size=26 \[ \log \left (4+\frac {4}{x}+\log \left (\frac {1}{2} x \left (e^{\sqrt [4]{e}}+x+x^2\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.71, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\sqrt [4]{e}} (-4+x)-4 x-2 x^2+3 x^3}{4 x^2+8 x^3+4 x^4+e^{\sqrt [4]{e}} \left (4 x+4 x^2\right )+\left (e^{\sqrt [4]{e}} x^2+x^3+x^4\right ) \log \left (\frac {1}{2} \left (e^{\sqrt [4]{e}} x+x^2+x^3\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4 e^{\sqrt [4]{e}}-\left (4-e^{\sqrt [4]{e}}\right ) x-2 x^2+3 x^3}{x \left (e^{\sqrt [4]{e}}+x+x^2\right ) \left (4+4 x+x \log \left (\frac {1}{2} x \left (e^{\sqrt [4]{e}}+x+x^2\right )\right )\right )} \, dx\\ &=\int \left (\frac {3}{4+4 x+x \log \left (\frac {1}{2} x \left (e^{\sqrt [4]{e}}+x+x^2\right )\right )}-\frac {4}{x \left (4+4 x+x \log \left (\frac {1}{2} x \left (e^{\sqrt [4]{e}}+x+x^2\right )\right )\right )}-\frac {2 e^{\sqrt [4]{e}}+x}{\left (e^{\sqrt [4]{e}}+x+x^2\right ) \left (4+4 x+x \log \left (\frac {1}{2} x \left (e^{\sqrt [4]{e}}+x+x^2\right )\right )\right )}\right ) \, dx\\ &=3 \int \frac {1}{4+4 x+x \log \left (\frac {1}{2} x \left (e^{\sqrt [4]{e}}+x+x^2\right )\right )} \, dx-4 \int \frac {1}{x \left (4+4 x+x \log \left (\frac {1}{2} x \left (e^{\sqrt [4]{e}}+x+x^2\right )\right )\right )} \, dx-\int \frac {2 e^{\sqrt [4]{e}}+x}{\left (e^{\sqrt [4]{e}}+x+x^2\right ) \left (4+4 x+x \log \left (\frac {1}{2} x \left (e^{\sqrt [4]{e}}+x+x^2\right )\right )\right )} \, dx\\ &=3 \int \frac {1}{4+4 x+x \log \left (\frac {1}{2} x \left (e^{\sqrt [4]{e}}+x+x^2\right )\right )} \, dx-4 \int \frac {1}{x \left (4+4 x+x \log \left (\frac {1}{2} x \left (e^{\sqrt [4]{e}}+x+x^2\right )\right )\right )} \, dx-\int \left (\frac {2 e^{\sqrt [4]{e}}}{\left (e^{\sqrt [4]{e}}+x+x^2\right ) \left (4+4 x+x \log \left (\frac {1}{2} x \left (e^{\sqrt [4]{e}}+x+x^2\right )\right )\right )}+\frac {x}{\left (e^{\sqrt [4]{e}}+x+x^2\right ) \left (4+4 x+x \log \left (\frac {1}{2} x \left (e^{\sqrt [4]{e}}+x+x^2\right )\right )\right )}\right ) \, dx\\ &=3 \int \frac {1}{4+4 x+x \log \left (\frac {1}{2} x \left (e^{\sqrt [4]{e}}+x+x^2\right )\right )} \, dx-4 \int \frac {1}{x \left (4+4 x+x \log \left (\frac {1}{2} x \left (e^{\sqrt [4]{e}}+x+x^2\right )\right )\right )} \, dx-\left (2 e^{\sqrt [4]{e}}\right ) \int \frac {1}{\left (e^{\sqrt [4]{e}}+x+x^2\right ) \left (4+4 x+x \log \left (\frac {1}{2} x \left (e^{\sqrt [4]{e}}+x+x^2\right )\right )\right )} \, dx-\int \frac {x}{\left (e^{\sqrt [4]{e}}+x+x^2\right ) \left (4+4 x+x \log \left (\frac {1}{2} x \left (e^{\sqrt [4]{e}}+x+x^2\right )\right )\right )} \, dx\\ &=3 \int \frac {1}{4+4 x+x \log \left (\frac {1}{2} x \left (e^{\sqrt [4]{e}}+x+x^2\right )\right )} \, dx-4 \int \frac {1}{x \left (4+4 x+x \log \left (\frac {1}{2} x \left (e^{\sqrt [4]{e}}+x+x^2\right )\right )\right )} \, dx-\left (2 e^{\sqrt [4]{e}}\right ) \int \left (\frac {2 i}{\sqrt {-1+4 e^{\sqrt [4]{e}}} \left (-1+i \sqrt {-1+4 e^{\sqrt [4]{e}}}-2 x\right ) \left (4+4 x+x \log \left (\frac {1}{2} x \left (e^{\sqrt [4]{e}}+x+x^2\right )\right )\right )}+\frac {2 i}{\sqrt {-1+4 e^{\sqrt [4]{e}}} \left (1+i \sqrt {-1+4 e^{\sqrt [4]{e}}}+2 x\right ) \left (4+4 x+x \log \left (\frac {1}{2} x \left (e^{\sqrt [4]{e}}+x+x^2\right )\right )\right )}\right ) \, dx-\int \left (\frac {1+\frac {i}{\sqrt {-1+4 e^{\sqrt [4]{e}}}}}{\left (1-i \sqrt {-1+4 e^{\sqrt [4]{e}}}+2 x\right ) \left (4+4 x+x \log \left (\frac {1}{2} x \left (e^{\sqrt [4]{e}}+x+x^2\right )\right )\right )}+\frac {1-\frac {i}{\sqrt {-1+4 e^{\sqrt [4]{e}}}}}{\left (1+i \sqrt {-1+4 e^{\sqrt [4]{e}}}+2 x\right ) \left (4+4 x+x \log \left (\frac {1}{2} x \left (e^{\sqrt [4]{e}}+x+x^2\right )\right )\right )}\right ) \, dx\\ &=3 \int \frac {1}{4+4 x+x \log \left (\frac {1}{2} x \left (e^{\sqrt [4]{e}}+x+x^2\right )\right )} \, dx-4 \int \frac {1}{x \left (4+4 x+x \log \left (\frac {1}{2} x \left (e^{\sqrt [4]{e}}+x+x^2\right )\right )\right )} \, dx-\frac {\left (4 i e^{\sqrt [4]{e}}\right ) \int \frac {1}{\left (-1+i \sqrt {-1+4 e^{\sqrt [4]{e}}}-2 x\right ) \left (4+4 x+x \log \left (\frac {1}{2} x \left (e^{\sqrt [4]{e}}+x+x^2\right )\right )\right )} \, dx}{\sqrt {-1+4 e^{\sqrt [4]{e}}}}-\frac {\left (4 i e^{\sqrt [4]{e}}\right ) \int \frac {1}{\left (1+i \sqrt {-1+4 e^{\sqrt [4]{e}}}+2 x\right ) \left (4+4 x+x \log \left (\frac {1}{2} x \left (e^{\sqrt [4]{e}}+x+x^2\right )\right )\right )} \, dx}{\sqrt {-1+4 e^{\sqrt [4]{e}}}}-\left (1-\frac {i}{\sqrt {-1+4 e^{\sqrt [4]{e}}}}\right ) \int \frac {1}{\left (1+i \sqrt {-1+4 e^{\sqrt [4]{e}}}+2 x\right ) \left (4+4 x+x \log \left (\frac {1}{2} x \left (e^{\sqrt [4]{e}}+x+x^2\right )\right )\right )} \, dx-\left (1+\frac {i}{\sqrt {-1+4 e^{\sqrt [4]{e}}}}\right ) \int \frac {1}{\left (1-i \sqrt {-1+4 e^{\sqrt [4]{e}}}+2 x\right ) \left (4+4 x+x \log \left (\frac {1}{2} x \left (e^{\sqrt [4]{e}}+x+x^2\right )\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 4.72, size = 31, normalized size = 1.19 \begin {gather*} -\log (x)+\log \left (4+4 x+x \log \left (\frac {1}{2} x \left (e^{\sqrt [4]{e}}+x+x^2\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 30, normalized size = 1.15 \begin {gather*} \log \left (\frac {x \log \left (\frac {1}{2} \, x^{3} + \frac {1}{2} \, x^{2} + \frac {1}{2} \, x e^{\left (e^{\frac {1}{4}}\right )}\right ) + 4 \, x + 4}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 31, normalized size = 1.19 \begin {gather*} \log \left (x \log \left (\frac {1}{2} \, x^{3} + \frac {1}{2} \, x^{2} + \frac {1}{2} \, x e^{\left (e^{\frac {1}{4}}\right )}\right ) + 4 \, x + 4\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 29, normalized size = 1.12
method | result | size |
risch | \(\ln \left (\ln \left (\frac {x \,{\mathrm e}^{{\mathrm e}^{\frac {1}{4}}}}{2}+\frac {x^{3}}{2}+\frac {x^{2}}{2}\right )+\frac {4 x +4}{x}\right )\) | \(29\) |
norman | \(-\ln \relax (x )+\ln \left (x \ln \left (\frac {x \,{\mathrm e}^{{\mathrm e}^{\frac {1}{4}}}}{2}+\frac {x^{3}}{2}+\frac {x^{2}}{2}\right )+4 x +4\right )\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 31, normalized size = 1.19 \begin {gather*} \log \left (-\frac {x {\left (\log \relax (2) - 4\right )} - x \log \left (x^{2} + x + e^{\left (e^{\frac {1}{4}}\right )}\right ) - x \log \relax (x) - 4}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.73, size = 26, normalized size = 1.00 \begin {gather*} \ln \left (\ln \left (\frac {x^3}{2}+\frac {x^2}{2}+\frac {{\mathrm {e}}^{{\mathrm {e}}^{1/4}}\,x}{2}\right )+\frac {4}{x}+4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.37, size = 29, normalized size = 1.12 \begin {gather*} \log {\left (\log {\left (\frac {x^{3}}{2} + \frac {x^{2}}{2} + \frac {x e^{e^{\frac {1}{4}}}}{2} \right )} + \frac {4 x + 4}{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________