Optimal. Leaf size=24 \[ -5+\frac {1}{2} \left (-2+\left (e^{-1+2 x}+\log \left (\frac {3 x}{2}\right )\right )^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.08, antiderivative size = 38, normalized size of antiderivative = 1.58, number of steps used = 5, number of rules used = 4, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.098, Rules used = {14, 2194, 2301, 2288} \begin {gather*} \frac {1}{2} e^{4 x-2}+\frac {1}{2} \log ^2\left (\frac {3 x}{2}\right )+e^{2 x-1} \log \left (\frac {3 x}{2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2194
Rule 2288
Rule 2301
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (2 e^{-2+4 x}+\frac {\log \left (\frac {3 x}{2}\right )}{x}+\frac {e^{-1+2 x} \left (1+2 x \log \left (\frac {3 x}{2}\right )\right )}{x}\right ) \, dx\\ &=2 \int e^{-2+4 x} \, dx+\int \frac {\log \left (\frac {3 x}{2}\right )}{x} \, dx+\int \frac {e^{-1+2 x} \left (1+2 x \log \left (\frac {3 x}{2}\right )\right )}{x} \, dx\\ &=\frac {1}{2} e^{-2+4 x}+e^{-1+2 x} \log \left (\frac {3 x}{2}\right )+\frac {1}{2} \log ^2\left (\frac {3 x}{2}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 23, normalized size = 0.96 \begin {gather*} \frac {\left (e^{2 x}+e \log \left (\frac {3 x}{2}\right )\right )^2}{2 e^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 28, normalized size = 1.17 \begin {gather*} e^{\left (2 \, x - 1\right )} \log \left (\frac {3}{2} \, x\right ) + \frac {1}{2} \, \log \left (\frac {3}{2} \, x\right )^{2} + \frac {1}{2} \, e^{\left (4 \, x - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.13, size = 64, normalized size = 2.67 \begin {gather*} \frac {1}{2} \, {\left (2 \, e^{3} \log \relax (3) \log \relax (x) - 2 \, e^{3} \log \relax (2) \log \relax (x) + e^{3} \log \relax (x)^{2} + 2 \, e^{\left (2 \, x + 2\right )} \log \relax (3) - 2 \, e^{\left (2 \, x + 2\right )} \log \relax (2) + 2 \, e^{\left (2 \, x + 2\right )} \log \relax (x) + e^{\left (4 \, x + 1\right )}\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 29, normalized size = 1.21
method | result | size |
risch | \(\ln \left (\frac {3 x}{2}\right ) {\mathrm e}^{2 x -1}+\frac {\ln \left (\frac {3 x}{2}\right )^{2}}{2}+\frac {{\mathrm e}^{4 x -2}}{2}\) | \(29\) |
default | \(\ln \left (\frac {3 x}{2}\right ) {\mathrm e}^{2 x -1}+\frac {\ln \left (\frac {3 x}{2}\right )^{2}}{2}+\frac {{\mathrm e}^{4 x -2}}{2}\) | \(31\) |
norman | \(\ln \left (\frac {3 x}{2}\right ) {\mathrm e}^{2 x -1}+\frac {\ln \left (\frac {3 x}{2}\right )^{2}}{2}+\frac {{\mathrm e}^{4 x -2}}{2}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 28, normalized size = 1.17 \begin {gather*} e^{\left (2 \, x - 1\right )} \log \left (\frac {3}{2} \, x\right ) + \frac {1}{2} \, \log \left (\frac {3}{2} \, x\right )^{2} + \frac {1}{2} \, e^{\left (4 \, x - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.29, size = 15, normalized size = 0.62 \begin {gather*} \frac {{\left (\ln \left (\frac {3\,x}{2}\right )+{\mathrm {e}}^{2\,x-1}\right )}^2}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 31, normalized size = 1.29 \begin {gather*} e^{2 x - 1} \log {\left (\frac {3 x}{2} \right )} + \frac {e^{4 x - 2}}{2} + \frac {\log {\left (\frac {3 x}{2} \right )}^{2}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________