Optimal. Leaf size=32 \[ 2+\frac {x}{x+\log \left (\frac {\log (x)}{2+x-\frac {1-2 e^{-x}}{\log (5)}}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 1.59, antiderivative size = 35, normalized size of antiderivative = 1.09, number of steps used = 3, number of rules used = 3, integrand size = 203, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.015, Rules used = {6688, 6711, 32} \begin {gather*} -\frac {1}{\frac {x}{\log \left (\frac {e^x \log (5) \log (x)}{e^x ((x+2) \log (5)-1)+2}\right )}+1} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 32
Rule 6688
Rule 6711
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2-e^x (-1+x \log (5)+\log (25))+\log (x) \left (x \left (-2+e^x \log (5)\right )+\left (2+e^x (-1+x \log (5)+\log (25))\right ) \log \left (\frac {e^x \log (5) \log (x)}{2+e^x (-1+(2+x) \log (5))}\right )\right )}{\left (2+e^x (-1+x \log (5)+\log (25))\right ) \log (x) \left (x+\log \left (\frac {e^x \log (5) \log (x)}{2+e^x (-1+(2+x) \log (5))}\right )\right )^2} \, dx\\ &=\operatorname {Subst}\left (\int \frac {1}{(1+x)^2} \, dx,x,\frac {x}{\log \left (\frac {e^x \log (5) \log (x)}{2+e^x (-1+(2+x) \log (5))}\right )}\right )\\ &=-\frac {1}{1+\frac {x}{\log \left (\frac {e^x \log (5) \log (x)}{2+e^x (-1+(2+x) \log (5))}\right )}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.40, size = 31, normalized size = 0.97 \begin {gather*} \frac {x}{x+\log \left (\frac {e^x \log (5) \log (x)}{2+e^x (-1+(2+x) \log (5))}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 29, normalized size = 0.91 \begin {gather*} \frac {x}{x + \log \left (\frac {e^{x} \log \relax (5) \log \relax (x)}{{\left ({\left (x + 2\right )} \log \relax (5) - 1\right )} e^{x} + 2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.31, size = 430, normalized size = 13.44
method | result | size |
risch | \(\frac {2 x}{-i \pi \mathrm {csgn}\left (\frac {i {\mathrm e}^{x} \ln \relax (x )}{\left ({\mathrm e}^{x} x +2 \,{\mathrm e}^{x}\right ) \ln \relax (5)-{\mathrm e}^{x}+2}\right )^{3}-i \pi \,\mathrm {csgn}\left (\frac {i}{\left ({\mathrm e}^{x} x +2 \,{\mathrm e}^{x}\right ) \ln \relax (5)-{\mathrm e}^{x}+2}\right ) \mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (\frac {i \ln \relax (x )}{\left ({\mathrm e}^{x} x +2 \,{\mathrm e}^{x}\right ) \ln \relax (5)-{\mathrm e}^{x}+2}\right )-i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (\frac {i \ln \relax (x )}{\left ({\mathrm e}^{x} x +2 \,{\mathrm e}^{x}\right ) \ln \relax (5)-{\mathrm e}^{x}+2}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{x} \ln \relax (x )}{\left ({\mathrm e}^{x} x +2 \,{\mathrm e}^{x}\right ) \ln \relax (5)-{\mathrm e}^{x}+2}\right )+i \pi \,\mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (\frac {i \ln \relax (x )}{\left ({\mathrm e}^{x} x +2 \,{\mathrm e}^{x}\right ) \ln \relax (5)-{\mathrm e}^{x}+2}\right )^{2}+i \pi \,\mathrm {csgn}\left (\frac {i}{\left ({\mathrm e}^{x} x +2 \,{\mathrm e}^{x}\right ) \ln \relax (5)-{\mathrm e}^{x}+2}\right ) \mathrm {csgn}\left (\frac {i \ln \relax (x )}{\left ({\mathrm e}^{x} x +2 \,{\mathrm e}^{x}\right ) \ln \relax (5)-{\mathrm e}^{x}+2}\right )^{2}+i \pi \,\mathrm {csgn}\left (\frac {i \ln \relax (x )}{\left ({\mathrm e}^{x} x +2 \,{\mathrm e}^{x}\right ) \ln \relax (5)-{\mathrm e}^{x}+2}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{x} \ln \relax (x )}{\left ({\mathrm e}^{x} x +2 \,{\mathrm e}^{x}\right ) \ln \relax (5)-{\mathrm e}^{x}+2}\right )^{2}+i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{x} \ln \relax (x )}{\left ({\mathrm e}^{x} x +2 \,{\mathrm e}^{x}\right ) \ln \relax (5)-{\mathrm e}^{x}+2}\right )^{2}-i \pi \mathrm {csgn}\left (\frac {i \ln \relax (x )}{\left ({\mathrm e}^{x} x +2 \,{\mathrm e}^{x}\right ) \ln \relax (5)-{\mathrm e}^{x}+2}\right )^{3}+2 \ln \left (\ln \relax (5)\right )+2 x +2 \ln \left (\ln \relax (x )\right )-2 \ln \left (\left ({\mathrm e}^{x} x +2 \,{\mathrm e}^{x}\right ) \ln \relax (5)-{\mathrm e}^{x}+2\right )+2 \ln \left ({\mathrm e}^{x}\right )}\) | \(430\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.06, size = 32, normalized size = 1.00 \begin {gather*} \frac {x}{2 \, x - \log \left ({\left (x \log \relax (5) + 2 \, \log \relax (5) - 1\right )} e^{x} + 2\right ) + \log \left (\log \relax (5)\right ) + \log \left (\log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} -\int \frac {{\mathrm {e}}^x\,\left (\ln \relax (5)\,\left (x+2\right )-1\right )+\ln \relax (x)\,\left (2\,x-x\,{\mathrm {e}}^x\,\ln \relax (5)\right )-\ln \relax (x)\,\ln \left (\frac {{\mathrm {e}}^x\,\ln \relax (5)\,\ln \relax (x)}{{\mathrm {e}}^x\,\left (\ln \relax (5)\,\left (x+2\right )-1\right )+2}\right )\,\left ({\mathrm {e}}^x\,\left (\ln \relax (5)\,\left (x+2\right )-1\right )+2\right )+2}{\ln \relax (x)\,\left ({\mathrm {e}}^x\,\left (\ln \relax (5)\,\left (x+2\right )-1\right )+2\right )\,{\ln \left (\frac {{\mathrm {e}}^x\,\ln \relax (5)\,\ln \relax (x)}{{\mathrm {e}}^x\,\left (\ln \relax (5)\,\left (x+2\right )-1\right )+2}\right )}^2+\ln \relax (x)\,\left (4\,x-{\mathrm {e}}^x\,\left (2\,x-\ln \relax (5)\,\left (2\,x^2+4\,x\right )\right )\right )\,\ln \left (\frac {{\mathrm {e}}^x\,\ln \relax (5)\,\ln \relax (x)}{{\mathrm {e}}^x\,\left (\ln \relax (5)\,\left (x+2\right )-1\right )+2}\right )+\ln \relax (x)\,\left ({\mathrm {e}}^x\,\left (\ln \relax (5)\,\left (x^3+2\,x^2\right )-x^2\right )+2\,x^2\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.56, size = 27, normalized size = 0.84 \begin {gather*} \frac {x}{x + \log {\left (\frac {e^{x} \log {\relax (5 )} \log {\relax (x )}}{\left (\left (x + 2\right ) \log {\relax (5 )} - 1\right ) e^{x} + 2} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________