Optimal. Leaf size=25 \[ \log \left (-1-e^{-e^3} (1-5 x)+2 x-x^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 20, normalized size of antiderivative = 0.80, number of steps used = 1, number of rules used = 1, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.029, Rules used = {1587} \begin {gather*} \log \left (e^{e^3} \left (x^2-2 x+1\right )-5 x+1\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1587
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\log \left (1-5 x+e^{e^3} \left (1-2 x+x^2\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 19, normalized size = 0.76 \begin {gather*} \log \left (-4-5 (-1+x)+e^{e^3} (-1+x)^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.49, size = 18, normalized size = 0.72 \begin {gather*} \log \left ({\left (x^{2} - 2 \, x + 1\right )} e^{\left (e^{3}\right )} - 5 \, x + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 21, normalized size = 0.84 \begin {gather*} \log \left ({\left | {\left (x^{2} - 2 \, x\right )} e^{\left (e^{3}\right )} - 5 \, x + e^{\left (e^{3}\right )} + 1 \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.19, size = 19, normalized size = 0.76
method | result | size |
derivativedivides | \(\ln \left (\left (x^{2}-2 x +1\right ) {\mathrm e}^{{\mathrm e}^{3}}-5 x +1\right )\) | \(19\) |
default | \(\ln \left (x^{2} {\mathrm e}^{{\mathrm e}^{3}}-2 x \,{\mathrm e}^{{\mathrm e}^{3}}+{\mathrm e}^{{\mathrm e}^{3}}-5 x +1\right )\) | \(23\) |
norman | \(\ln \left (x^{2} {\mathrm e}^{{\mathrm e}^{3}}-2 x \,{\mathrm e}^{{\mathrm e}^{3}}+{\mathrm e}^{{\mathrm e}^{3}}-5 x +1\right )\) | \(23\) |
risch | \(\ln \left (x^{2} {\mathrm e}^{{\mathrm e}^{3}}+\left (-2 \,{\mathrm e}^{{\mathrm e}^{3}}-5\right ) x +{\mathrm e}^{{\mathrm e}^{3}}+1\right )\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 23, normalized size = 0.92 \begin {gather*} \log \left (x^{2} e^{\left (e^{3}\right )} - x {\left (2 \, e^{\left (e^{3}\right )} + 5\right )} + e^{\left (e^{3}\right )} + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.17, size = 23, normalized size = 0.92 \begin {gather*} \ln \left ({\mathrm {e}}^{{\mathrm {e}}^3}\,x^2+\left (-2\,{\mathrm {e}}^{{\mathrm {e}}^3}-5\right )\,x+{\mathrm {e}}^{{\mathrm {e}}^3}+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 27, normalized size = 1.08 \begin {gather*} \log {\left (x^{2} e^{e^{3}} + x \left (- 2 e^{e^{3}} - 5\right ) + 1 + e^{e^{3}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________