Optimal. Leaf size=18 \[ e^x-\frac {5 (-16+x) (-2+x)}{e^5 x^3} \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 28, normalized size of antiderivative = 1.56, number of steps used = 6, number of rules used = 3, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {12, 14, 2194} \begin {gather*} -\frac {160}{e^5 x^3}+\frac {90}{e^5 x^2}+e^x-\frac {5}{e^5 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {480-180 x+5 x^2+e^{5+x} x^4}{x^4} \, dx}{e^5}\\ &=\frac {\int \left (e^{5+x}+\frac {5 \left (96-36 x+x^2\right )}{x^4}\right ) \, dx}{e^5}\\ &=\frac {\int e^{5+x} \, dx}{e^5}+\frac {5 \int \frac {96-36 x+x^2}{x^4} \, dx}{e^5}\\ &=e^x+\frac {5 \int \left (\frac {96}{x^4}-\frac {36}{x^3}+\frac {1}{x^2}\right ) \, dx}{e^5}\\ &=e^x-\frac {160}{e^5 x^3}+\frac {90}{e^5 x^2}-\frac {5}{e^5 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 25, normalized size = 1.39 \begin {gather*} \frac {e^{5+x}-\frac {160}{x^3}+\frac {90}{x^2}-\frac {5}{x}}{e^5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.48, size = 24, normalized size = 1.33 \begin {gather*} \frac {{\left (x^{3} e^{\left (x + 5\right )} - 5 \, x^{2} + 90 \, x - 160\right )} e^{\left (-5\right )}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 24, normalized size = 1.33 \begin {gather*} \frac {{\left (x^{3} e^{\left (x + 5\right )} - 5 \, x^{2} + 90 \, x - 160\right )} e^{\left (-5\right )}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 20, normalized size = 1.11
method | result | size |
risch | \(\frac {{\mathrm e}^{-5} \left (-5 x^{2}+90 x -160\right )}{x^{3}}+{\mathrm e}^{x}\) | \(20\) |
default | \({\mathrm e}^{-5} \left ({\mathrm e}^{5} {\mathrm e}^{x}-\frac {160}{x^{3}}+\frac {90}{x^{2}}-\frac {5}{x}\right )\) | \(27\) |
norman | \(\frac {{\mathrm e}^{x} x^{3}-160 \,{\mathrm e}^{-5}+90 x \,{\mathrm e}^{-5}-5 x^{2} {\mathrm e}^{-5}}{x^{3}}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 26, normalized size = 1.44 \begin {gather*} -{\left (\frac {5}{x} - \frac {90}{x^{2}} + \frac {160}{x^{3}} - e^{\left (x + 5\right )}\right )} e^{\left (-5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.17, size = 25, normalized size = 1.39 \begin {gather*} {\mathrm {e}}^x-\frac {5\,{\mathrm {e}}^{-5}\,x^2-90\,{\mathrm {e}}^{-5}\,x+160\,{\mathrm {e}}^{-5}}{x^3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 19, normalized size = 1.06 \begin {gather*} e^{x} + \frac {- 5 x^{2} + 90 x - 160}{x^{3} e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________