3.67.81 480180x+5x2+e5+xx4e5x4dx

Optimal. Leaf size=18 ex5(16+x)(2+x)e5x3

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 28, normalized size of antiderivative = 1.56, number of steps used = 6, number of rules used = 3, integrand size = 26, number of rulesintegrand size = 0.115, Rules used = {12, 14, 2194} 160e5x3+90e5x2+ex5e5x

Antiderivative was successfully verified.

[In]

Int[(480 - 180*x + 5*x^2 + E^(5 + x)*x^4)/(E^5*x^4),x]

[Out]

E^x - 160/(E^5*x^3) + 90/(E^5*x^2) - 5/(E^5*x)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rubi steps

integral=480180x+5x2+e5+xx4x4dxe5=(e5+x+5(9636x+x2)x4)dxe5=e5+xdxe5+59636x+x2x4dxe5=ex+5(96x436x3+1x2)dxe5=ex160e5x3+90e5x25e5x

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 25, normalized size = 1.39 e5+x160x3+90x25xe5

Antiderivative was successfully verified.

[In]

Integrate[(480 - 180*x + 5*x^2 + E^(5 + x)*x^4)/(E^5*x^4),x]

[Out]

(E^(5 + x) - 160/x^3 + 90/x^2 - 5/x)/E^5

________________________________________________________________________________________

fricas [A]  time = 0.48, size = 24, normalized size = 1.33 (x3e(x+5)5x2+90x160)e(5)x3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4*exp(5)*exp(x)+5*x^2-180*x+480)/x^4/exp(5),x, algorithm="fricas")

[Out]

(x^3*e^(x + 5) - 5*x^2 + 90*x - 160)*e^(-5)/x^3

________________________________________________________________________________________

giac [A]  time = 0.18, size = 24, normalized size = 1.33 (x3e(x+5)5x2+90x160)e(5)x3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4*exp(5)*exp(x)+5*x^2-180*x+480)/x^4/exp(5),x, algorithm="giac")

[Out]

(x^3*e^(x + 5) - 5*x^2 + 90*x - 160)*e^(-5)/x^3

________________________________________________________________________________________

maple [A]  time = 0.04, size = 20, normalized size = 1.11




method result size



risch e5(5x2+90x160)x3+ex 20
default e5(e5ex160x3+90x25x) 27
norman exx3160e5+90xe55x2e5x3 34



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^4*exp(5)*exp(x)+5*x^2-180*x+480)/x^4/exp(5),x,method=_RETURNVERBOSE)

[Out]

exp(-5)*(-5*x^2+90*x-160)/x^3+exp(x)

________________________________________________________________________________________

maxima [A]  time = 0.44, size = 26, normalized size = 1.44 (5x90x2+160x3e(x+5))e(5)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4*exp(5)*exp(x)+5*x^2-180*x+480)/x^4/exp(5),x, algorithm="maxima")

[Out]

-(5/x - 90/x^2 + 160/x^3 - e^(x + 5))*e^(-5)

________________________________________________________________________________________

mupad [B]  time = 4.17, size = 25, normalized size = 1.39 ex5e5x290e5x+160e5x3

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(-5)*(5*x^2 - 180*x + x^4*exp(5)*exp(x) + 480))/x^4,x)

[Out]

exp(x) - (160*exp(-5) - 90*x*exp(-5) + 5*x^2*exp(-5))/x^3

________________________________________________________________________________________

sympy [A]  time = 0.11, size = 19, normalized size = 1.06 ex+5x2+90x160x3e5

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**4*exp(5)*exp(x)+5*x**2-180*x+480)/x**4/exp(5),x)

[Out]

exp(x) + (-5*x**2 + 90*x - 160)*exp(-5)/x**3

________________________________________________________________________________________