3.67.84
Optimal. Leaf size=31
________________________________________________________________________________________
Rubi [A] time = 6.86, antiderivative size = 46, normalized size of antiderivative = 1.48,
number of steps used = 4, number of rules used = 3, integrand size = 233, = 0.013, Rules used
= {6688, 12, 6712}
Antiderivative was successfully verified.
[In]
Int[((-6 - 60*x + 24*x^2 + E^x*(-12*x - 12*x^2))*Log[x]^2 + ((2 + 20*x - 8*x^2 + E^x*(4*x + 4*x^2))*Log[x] + (
(60*x + 12*E^x*x - 12*x^2)*Log[x] + 6*Log[x]^2)*Log[10*x + 2*E^x*x - 2*x^2 + Log[x]])*Log[Log[10*x + 2*E^x*x -
2*x^2 + Log[x]]] + (-20*x - 4*E^x*x + 4*x^2 - 2*Log[x])*Log[10*x + 2*E^x*x - 2*x^2 + Log[x]]*Log[Log[10*x + 2
*E^x*x - 2*x^2 + Log[x]]]^2)/(((10*x^2 + 2*E^x*x^2 - 2*x^3)*Log[x]^3 + x*Log[x]^4)*Log[10*x + 2*E^x*x - 2*x^2
+ Log[x]]),x]
[Out]
(-6*Log[Log[2*(5 + E^x - x)*x + Log[x]]])/Log[x] + Log[Log[2*(5 + E^x - x)*x + Log[x]]]^2/Log[x]^2
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 6688
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]
Rule 6712
Int[(u_)*(v_)^(r_.)*((a_.)*(v_)^(p_.) + (b_.)*(w_)^(q_.))^(m_.), x_Symbol] :> With[{c = Simplify[u/(p*w*D[v, x
] - q*v*D[w, x])]}, -Dist[c*q, Subst[Int[(a + b*x^q)^m, x], x, v^(m*p + r + 1)*w], x] /; FreeQ[c, x]] /; FreeQ
[{a, b, m, p, q, r}, x] && EqQ[p + q*(m*p + r + 1), 0] && IntegerQ[q] && IntegerQ[m]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.20, size = 51, normalized size = 1.65
Antiderivative was successfully verified.
[In]
Integrate[((-6 - 60*x + 24*x^2 + E^x*(-12*x - 12*x^2))*Log[x]^2 + ((2 + 20*x - 8*x^2 + E^x*(4*x + 4*x^2))*Log[
x] + ((60*x + 12*E^x*x - 12*x^2)*Log[x] + 6*Log[x]^2)*Log[10*x + 2*E^x*x - 2*x^2 + Log[x]])*Log[Log[10*x + 2*E
^x*x - 2*x^2 + Log[x]]] + (-20*x - 4*E^x*x + 4*x^2 - 2*Log[x])*Log[10*x + 2*E^x*x - 2*x^2 + Log[x]]*Log[Log[10
*x + 2*E^x*x - 2*x^2 + Log[x]]]^2)/(((10*x^2 + 2*E^x*x^2 - 2*x^3)*Log[x]^3 + x*Log[x]^4)*Log[10*x + 2*E^x*x -
2*x^2 + Log[x]]),x]
[Out]
2*((-3*Log[Log[-2*x*(-5 - E^x + x) + Log[x]]])/Log[x] + Log[Log[-2*x*(-5 - E^x + x) + Log[x]]]^2/(2*Log[x]^2))
________________________________________________________________________________________
fricas [A] time = 0.60, size = 51, normalized size = 1.65
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-2*log(x)-4*exp(x)*x+4*x^2-20*x)*log(log(x)+2*exp(x)*x-2*x^2+10*x)*log(log(log(x)+2*exp(x)*x-2*x^2
+10*x))^2+((6*log(x)^2+(12*exp(x)*x-12*x^2+60*x)*log(x))*log(log(x)+2*exp(x)*x-2*x^2+10*x)+((4*x^2+4*x)*exp(x)
-8*x^2+20*x+2)*log(x))*log(log(log(x)+2*exp(x)*x-2*x^2+10*x))+((-12*x^2-12*x)*exp(x)+24*x^2-60*x-6)*log(x)^2)/
(x*log(x)^4+(2*exp(x)*x^2-2*x^3+10*x^2)*log(x)^3)/log(log(x)+2*exp(x)*x-2*x^2+10*x),x, algorithm="fricas")
[Out]
-(6*log(x)*log(log(-2*x^2 + 2*x*e^x + 10*x + log(x))) - log(log(-2*x^2 + 2*x*e^x + 10*x + log(x)))^2)/log(x)^2
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-2*log(x)-4*exp(x)*x+4*x^2-20*x)*log(log(x)+2*exp(x)*x-2*x^2+10*x)*log(log(log(x)+2*exp(x)*x-2*x^2
+10*x))^2+((6*log(x)^2+(12*exp(x)*x-12*x^2+60*x)*log(x))*log(log(x)+2*exp(x)*x-2*x^2+10*x)+((4*x^2+4*x)*exp(x)
-8*x^2+20*x+2)*log(x))*log(log(log(x)+2*exp(x)*x-2*x^2+10*x))+((-12*x^2-12*x)*exp(x)+24*x^2-60*x-6)*log(x)^2)/
(x*log(x)^4+(2*exp(x)*x^2-2*x^3+10*x^2)*log(x)^3)/log(log(x)+2*exp(x)*x-2*x^2+10*x),x, algorithm="giac")
[Out]
Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Simplification assuming t_nostep near 0Simplification assuming t_nostep near 0Sign error %%%{ln(` w`),0%%%}
Simplificat
________________________________________________________________________________________
maple [A] time = 0.04, size = 51, normalized size = 1.65
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((-2*ln(x)-4*exp(x)*x+4*x^2-20*x)*ln(ln(x)+2*exp(x)*x-2*x^2+10*x)*ln(ln(ln(x)+2*exp(x)*x-2*x^2+10*x))^2+((
6*ln(x)^2+(12*exp(x)*x-12*x^2+60*x)*ln(x))*ln(ln(x)+2*exp(x)*x-2*x^2+10*x)+((4*x^2+4*x)*exp(x)-8*x^2+20*x+2)*l
n(x))*ln(ln(ln(x)+2*exp(x)*x-2*x^2+10*x))+((-12*x^2-12*x)*exp(x)+24*x^2-60*x-6)*ln(x)^2)/(x*ln(x)^4+(2*exp(x)*
x^2-2*x^3+10*x^2)*ln(x)^3)/ln(ln(x)+2*exp(x)*x-2*x^2+10*x),x,method=_RETURNVERBOSE)
[Out]
1/ln(x)^2*ln(ln(ln(x)+2*exp(x)*x-2*x^2+10*x))^2-6/ln(x)*ln(ln(ln(x)+2*exp(x)*x-2*x^2+10*x))
________________________________________________________________________________________
maxima [A] time = 0.48, size = 51, normalized size = 1.65
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-2*log(x)-4*exp(x)*x+4*x^2-20*x)*log(log(x)+2*exp(x)*x-2*x^2+10*x)*log(log(log(x)+2*exp(x)*x-2*x^2
+10*x))^2+((6*log(x)^2+(12*exp(x)*x-12*x^2+60*x)*log(x))*log(log(x)+2*exp(x)*x-2*x^2+10*x)+((4*x^2+4*x)*exp(x)
-8*x^2+20*x+2)*log(x))*log(log(log(x)+2*exp(x)*x-2*x^2+10*x))+((-12*x^2-12*x)*exp(x)+24*x^2-60*x-6)*log(x)^2)/
(x*log(x)^4+(2*exp(x)*x^2-2*x^3+10*x^2)*log(x)^3)/log(log(x)+2*exp(x)*x-2*x^2+10*x),x, algorithm="maxima")
[Out]
-(6*log(x)*log(log(-2*x^2 + 2*x*e^x + 10*x + log(x))) - log(log(-2*x^2 + 2*x*e^x + 10*x + log(x)))^2)/log(x)^2
________________________________________________________________________________________
mupad [B] time = 5.34, size = 46, normalized size = 1.48
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(log(x)^2*(60*x + exp(x)*(12*x + 12*x^2) - 24*x^2 + 6) - log(log(10*x + log(x) + 2*x*exp(x) - 2*x^2))*(lo
g(10*x + log(x) + 2*x*exp(x) - 2*x^2)*(6*log(x)^2 + log(x)*(60*x + 12*x*exp(x) - 12*x^2)) + log(x)*(20*x + exp
(x)*(4*x + 4*x^2) - 8*x^2 + 2)) + log(10*x + log(x) + 2*x*exp(x) - 2*x^2)*log(log(10*x + log(x) + 2*x*exp(x) -
2*x^2))^2*(20*x + 2*log(x) + 4*x*exp(x) - 4*x^2))/(log(10*x + log(x) + 2*x*exp(x) - 2*x^2)*(x*log(x)^4 + log(
x)^3*(2*x^2*exp(x) + 10*x^2 - 2*x^3))),x)
[Out]
(log(log(10*x + log(x) + 2*x*exp(x) - 2*x^2))*(log(log(10*x + log(x) + 2*x*exp(x) - 2*x^2)) - 6*log(x)))/log(x
)^2
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-2*ln(x)-4*exp(x)*x+4*x**2-20*x)*ln(ln(x)+2*exp(x)*x-2*x**2+10*x)*ln(ln(ln(x)+2*exp(x)*x-2*x**2+10
*x))**2+((6*ln(x)**2+(12*exp(x)*x-12*x**2+60*x)*ln(x))*ln(ln(x)+2*exp(x)*x-2*x**2+10*x)+((4*x**2+4*x)*exp(x)-8
*x**2+20*x+2)*ln(x))*ln(ln(ln(x)+2*exp(x)*x-2*x**2+10*x))+((-12*x**2-12*x)*exp(x)+24*x**2-60*x-6)*ln(x)**2)/(x
*ln(x)**4+(2*exp(x)*x**2-2*x**3+10*x**2)*ln(x)**3)/ln(ln(x)+2*exp(x)*x-2*x**2+10*x),x)
[Out]
Timed out
________________________________________________________________________________________