Optimal. Leaf size=31 \[ \frac {\left (-e^x+x\right ) \left (-x+\frac {3 x}{\log (x)}-\frac {16 x}{5+\log (x)}\right )}{x} \]
________________________________________________________________________________________
Rubi [B] time = 1.72, antiderivative size = 65, normalized size of antiderivative = 2.10, number of steps used = 39, number of rules used = 8, integrand size = 96, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {6741, 6742, 2297, 2299, 2178, 2360, 2298, 2288} \begin {gather*} -x-\frac {e^x \left (-x \log ^4(x)-23 x \log ^3(x)-75 x \log ^2(x)+75 x \log (x)\right )}{x \log ^2(x) (\log (x)+5)^2}+\frac {3 x}{\log (x)}-\frac {16 x}{\log (x)+5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2178
Rule 2288
Rule 2297
Rule 2298
Rule 2299
Rule 2360
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {75 e^x-75 x+\left (e^x (30-75 x)+45 x\right ) \log (x)+\left (-62 x+e^x (-13+75 x)\right ) \log ^2(x)+\left (-23 x+23 e^x x\right ) \log ^3(x)+\left (-x+e^x x\right ) \log ^4(x)}{x \log ^2(x) (5+\log (x))^2} \, dx\\ &=\int \left (-\frac {62}{(5+\log (x))^2}-\frac {75}{\log ^2(x) (5+\log (x))^2}+\frac {45}{\log (x) (5+\log (x))^2}-\frac {23 \log (x)}{(5+\log (x))^2}-\frac {\log ^2(x)}{(5+\log (x))^2}+\frac {e^x \left (75+30 \log (x)-75 x \log (x)-13 \log ^2(x)+75 x \log ^2(x)+23 x \log ^3(x)+x \log ^4(x)\right )}{x \log ^2(x) (5+\log (x))^2}\right ) \, dx\\ &=-\left (23 \int \frac {\log (x)}{(5+\log (x))^2} \, dx\right )+45 \int \frac {1}{\log (x) (5+\log (x))^2} \, dx-62 \int \frac {1}{(5+\log (x))^2} \, dx-75 \int \frac {1}{\log ^2(x) (5+\log (x))^2} \, dx-\int \frac {\log ^2(x)}{(5+\log (x))^2} \, dx+\int \frac {e^x \left (75+30 \log (x)-75 x \log (x)-13 \log ^2(x)+75 x \log ^2(x)+23 x \log ^3(x)+x \log ^4(x)\right )}{x \log ^2(x) (5+\log (x))^2} \, dx\\ &=\frac {62 x}{5+\log (x)}-\frac {e^x \left (75 x \log (x)-75 x \log ^2(x)-23 x \log ^3(x)-x \log ^4(x)\right )}{x \log ^2(x) (5+\log (x))^2}-23 \int \left (-\frac {5}{(5+\log (x))^2}+\frac {1}{5+\log (x)}\right ) \, dx+45 \int \left (\frac {1}{25 \log (x)}-\frac {1}{5 (5+\log (x))^2}-\frac {1}{25 (5+\log (x))}\right ) \, dx-62 \int \frac {1}{5+\log (x)} \, dx-75 \int \left (\frac {1}{25 \log ^2(x)}-\frac {2}{125 \log (x)}+\frac {1}{25 (5+\log (x))^2}+\frac {2}{125 (5+\log (x))}\right ) \, dx-\int \left (1+\frac {25}{(5+\log (x))^2}-\frac {10}{5+\log (x)}\right ) \, dx\\ &=-x+\frac {62 x}{5+\log (x)}-\frac {e^x \left (75 x \log (x)-75 x \log ^2(x)-23 x \log ^3(x)-x \log ^4(x)\right )}{x \log ^2(x) (5+\log (x))^2}+\frac {6}{5} \int \frac {1}{\log (x)} \, dx-\frac {6}{5} \int \frac {1}{5+\log (x)} \, dx+\frac {9}{5} \int \frac {1}{\log (x)} \, dx-\frac {9}{5} \int \frac {1}{5+\log (x)} \, dx-3 \int \frac {1}{\log ^2(x)} \, dx-3 \int \frac {1}{(5+\log (x))^2} \, dx-9 \int \frac {1}{(5+\log (x))^2} \, dx+10 \int \frac {1}{5+\log (x)} \, dx-23 \int \frac {1}{5+\log (x)} \, dx-25 \int \frac {1}{(5+\log (x))^2} \, dx-62 \operatorname {Subst}\left (\int \frac {e^x}{5+x} \, dx,x,\log (x)\right )+115 \int \frac {1}{(5+\log (x))^2} \, dx\\ &=-x-\frac {62 \text {Ei}(5+\log (x))}{e^5}+\frac {3 x}{\log (x)}-\frac {16 x}{5+\log (x)}-\frac {e^x \left (75 x \log (x)-75 x \log ^2(x)-23 x \log ^3(x)-x \log ^4(x)\right )}{x \log ^2(x) (5+\log (x))^2}+3 \text {li}(x)-\frac {6}{5} \operatorname {Subst}\left (\int \frac {e^x}{5+x} \, dx,x,\log (x)\right )-\frac {9}{5} \operatorname {Subst}\left (\int \frac {e^x}{5+x} \, dx,x,\log (x)\right )-3 \int \frac {1}{\log (x)} \, dx-3 \int \frac {1}{5+\log (x)} \, dx-9 \int \frac {1}{5+\log (x)} \, dx+10 \operatorname {Subst}\left (\int \frac {e^x}{5+x} \, dx,x,\log (x)\right )-23 \operatorname {Subst}\left (\int \frac {e^x}{5+x} \, dx,x,\log (x)\right )-25 \int \frac {1}{5+\log (x)} \, dx+115 \int \frac {1}{5+\log (x)} \, dx\\ &=-x-\frac {78 \text {Ei}(5+\log (x))}{e^5}+\frac {3 x}{\log (x)}-\frac {16 x}{5+\log (x)}-\frac {e^x \left (75 x \log (x)-75 x \log ^2(x)-23 x \log ^3(x)-x \log ^4(x)\right )}{x \log ^2(x) (5+\log (x))^2}-3 \operatorname {Subst}\left (\int \frac {e^x}{5+x} \, dx,x,\log (x)\right )-9 \operatorname {Subst}\left (\int \frac {e^x}{5+x} \, dx,x,\log (x)\right )-25 \operatorname {Subst}\left (\int \frac {e^x}{5+x} \, dx,x,\log (x)\right )+115 \operatorname {Subst}\left (\int \frac {e^x}{5+x} \, dx,x,\log (x)\right )\\ &=-x+\frac {3 x}{\log (x)}-\frac {16 x}{5+\log (x)}-\frac {e^x \left (75 x \log (x)-75 x \log ^2(x)-23 x \log ^3(x)-x \log ^4(x)\right )}{x \log ^2(x) (5+\log (x))^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 28, normalized size = 0.90 \begin {gather*} \frac {\left (e^x-x\right ) \left (-15+18 \log (x)+\log ^2(x)\right )}{\log (x) (5+\log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.45, size = 42, normalized size = 1.35 \begin {gather*} -\frac {{\left (x - e^{x}\right )} \log \relax (x)^{2} + 18 \, {\left (x - e^{x}\right )} \log \relax (x) - 15 \, x + 15 \, e^{x}}{\log \relax (x)^{2} + 5 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 46, normalized size = 1.48 \begin {gather*} -\frac {x \log \relax (x)^{2} - e^{x} \log \relax (x)^{2} + 18 \, x \log \relax (x) - 18 \, e^{x} \log \relax (x) - 15 \, x + 15 \, e^{x}}{\log \relax (x)^{2} + 5 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 31, normalized size = 1.00
method | result | size |
risch | \({\mathrm e}^{x}-x -\frac {\left (x -{\mathrm e}^{x}\right ) \left (13 \ln \relax (x )-15\right )}{\ln \relax (x ) \left (5+\ln \relax (x )\right )}\) | \(31\) |
norman | \(\frac {{\mathrm e}^{x} \ln \relax (x )^{2}+15 x -18 x \ln \relax (x )-x \ln \relax (x )^{2}+18 \,{\mathrm e}^{x} \ln \relax (x )-15 \,{\mathrm e}^{x}}{\ln \relax (x ) \left (5+\ln \relax (x )\right )}\) | \(45\) |
default | \(-\frac {x \left (\ln \relax (x )^{2}+18 \ln \relax (x )-15\right )}{\left (5+\ln \relax (x )\right ) \ln \relax (x )}+\frac {{\mathrm e}^{x} \ln \relax (x )^{2}+18 \,{\mathrm e}^{x} \ln \relax (x )-15 \,{\mathrm e}^{x}}{\ln \relax (x ) \left (5+\ln \relax (x )\right )}\) | \(54\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 42, normalized size = 1.35 \begin {gather*} -\frac {x \log \relax (x)^{2} - {\left (\log \relax (x)^{2} + 18 \, \log \relax (x) - 15\right )} e^{x} + 18 \, x \log \relax (x) - 15 \, x}{\log \relax (x)^{2} + 5 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.21, size = 28, normalized size = 0.90 \begin {gather*} -\frac {\left (x-{\mathrm {e}}^x\right )\,\left ({\ln \relax (x)}^2+18\,\ln \relax (x)-15\right )}{\ln \relax (x)\,\left (\ln \relax (x)+5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.36, size = 46, normalized size = 1.48 \begin {gather*} - x + \frac {- 13 x \log {\relax (x )} + 15 x}{\log {\relax (x )}^{2} + 5 \log {\relax (x )}} + \frac {\left (\log {\relax (x )}^{2} + 18 \log {\relax (x )} - 15\right ) e^{x}}{\log {\relax (x )}^{2} + 5 \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________